login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A322733
Row sums of triangle A322730.
3
1, 4, 56, 1856, 103936, 8893952, 1080485888, 176673603584, 37417114009600, 9963927777050624, 3258468236083331072, 1283800576046355447808, 599766792781193235398656, 327833344685493011492110336, 207273007354010852132258840576, 150092604050210703675500571656192, 123411833893721992920958314267803648, 114350314285874476606422143072852770816, 118597403963878781240540181376561622024192, 136853838009919098121511181384398866938331136
OFFSET
0,2
LINKS
FORMULA
E.g.f. A(x) = S(x,y=x) given S(x,y) = Integral C(x,y)*C(y,x) dx such that C(x,y)^2 - S(x,y)^2 = 1 and C(y,x) = 1 + Integral S(y,x)*C(x,y) dy, where A(x) = Sum_{n>=0} a(n) * x^(2*n+1)/(2*n+1)!.
EXAMPLE
E.g.f.: A(x) = x + 4*x^3/3! + 56*x^5/5! + 1856*x^7/7! + 103936*x^9/9! + 8893952*x^11/11! + 1080485888*x^13/13! + 176673603584*x^15/15! + 37417114009600*x^17/17! + 9963927777050624*x^19/19! + ...
RELATED SERIES.
sqrt(1 + A(x)^2) = 1 + x^2/2! + 13*x^4/4! + 301*x^6/6! + 13049*x^8/8! + 916441*x^10/10! + 94195333*x^12/12! + 13347584069*x^14/14! + 2494336502897*x^16/16! + 594306468307633*x^18/18! + ... + A322734(n)*x^(2*n)/(2*n)! + ...
A(x) = sinh( Integral D(x) dx ) where D(x) = A'(x)/sqrt(1 + A(x)^2) begins
D(x) = 1 + 3*x^2/2! + 25*x^4/4! + 595*x^6/6! + 26193*x^8/8! + 1832611*x^10/10! + 188365801*x^12/12! + 26696014003*x^14/14! + 4988672502305*x^16/16! + 1188611267890243*x^18/18! + ...
PROG
(PARI) {A322730(n, k) = my(Sx=x, Sy=y, Cx=1, Cy=1); for(i=1, 2*n,
Sx = intformal( Cx*Cy +x*O(x^(2*n)), x);
Cx = 1 + intformal( Sx*Cy, x);
Sy = intformal( Cy*Cx +y*O(y^(2*k)), y);
Cy = 1 + intformal( Sy*Cx, y));
(2*n+1)! *polcoeff(polcoeff(Sx, 2*n+1-2*k, x), 2*k, y)}
a(n) = sum(k=0, n, A322730(n, k))
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Sequence in context: A009159 A013055 A243486 * A012983 A012959 A013113
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 01 2019
STATUS
approved