login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A243486
O.g.f.: exp( Integral Sum_{n>=1} (2*n-1)! * x^(n-1) / Product_{k=1..2*n-1} (1 - k*x) dx ).
2
1, 1, 4, 56, 1808, 106232, 9896612, 1340462108, 248849495342, 60665985936086, 18799855981319036, 7218637248203263916, 3364163526700490152184, 1870786124908364192990576, 1223751739268135893514592188, 930266933532473430610242752804, 813248080956872294046978463360859
OFFSET
0,3
EXAMPLE
G.f.: A(x) = 1 + x + 4*x^2 + 56*x^3 + 1808*x^4 + 106232*x^5 + 9896612*x^6 +...
The logarithmic derivative equals the series:
A'(x)/A(x) = 1/(1-x) + 3!*x/((1-x)*(1-2*x)*(1-3*x)) + 5!*x^2/((1-x)*(1-2*x)*(1-3*x)*(1-4*x)*(1-5*x)) + 7!*x^3/((1-x)*(1-2*x)*(1-3*x)*(1-4*x)*(1-5*x)*(1-6*x)*(1-7*x)) + 9!*x^4/((1-x)*(1-2*x)*(1-3*x)*(1-4*x)*(1-5*x)*(1-6*x)*(1-7*x)*(1-8*x)*(1-9*x)) +...
Explicitly, the logarithm of the o.g.f. begins:
log(A(x)) = x + 7*x^2/2 + 157*x^3/3 + 6991*x^4/4 + 521341*x^5/5 + 58702687*x^6/6 + 9311131117*x^7/7 + 1979781769231*x^8/8 +...
PROG
(PARI) {a(n)=polcoeff(exp(intformal(sum(m=1, n+1, (2*m-1)!*x^(m-1)/prod(k=1, 2*m-1, 1-k*x+x*O(x^n))))), n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Sequence in context: A111849 A009159 A013055 * A322733 A012983 A012959
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 05 2014
STATUS
approved