login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A322732
E.g.f. C(y,x) = 1 + Integral S(y,x)*C(x,y) dy such that C(x,y)^2 - S(x,y)^2 = 1 and C(x,y) = Integral S(x,y)*C(y,x) dx, where C(y,x) = Sum_{n>=0} Sum_{k=0..n} T(n,k) * x^(2*n-2*k)*y^(2*k)/(2*n)!, as a triangle of coefficients T(n,k) read by rows.
4
1, 0, 1, 0, 12, 1, 0, 120, 180, 1, 0, 896, 9520, 2632, 1, 0, 5760, 369600, 504000, 37080, 1, 0, 33792, 12735360, 57376704, 23562000, 487476, 1, 0, 186368, 399246848, 5256451200, 6645999360, 1039654616, 6045676, 1, 0, 983040, 11498905600, 427859367936, 1336544352000, 674286412800, 44074736160, 71745360, 1, 0, 5013504, 308405698560, 32219490680832, 224718683904000, 271641150443520, 63624274826112, 1793634471360, 823269744, 1
OFFSET
0,5
COMMENTS
See A322222 for another description of the e.g.f. of this sequence:
T(n,k) = binomial(2*n,2*k) * A322222(n,k).
Row reversal of A322731.
FORMULA
The special functions S(x,y), C(x,y), and D(x,y) satisfy the following relations.
(1a) S(x,y) = Integral C(x,y) * C(y,x) dx.
(1b) S(y,x) = Integral C(y,x) * C(x,y) dy.
(1c) C(x,y) = 1 + Integral S(x,y) * C(y,x) dx.
(1d) C(y,x) = 1 + Integral S(y,x) * C(x,y) dy.
(2a) C(x,y)^2 - S(x,y)^2 = 1.
(2b) C(y,x)^2 - S(y,x)^2 = 1.
(3a) S(x,y) = sinh( Integral C(y,x) dx ).
(3b) S(y,x) = sinh( Integral C(x,y) dy ).
(3c) C(x,y) = cosh( Integral C(y,x) dx ).
(3d) C(y,x) = cosh( Integral C(x,y) dy ).
(4a) C(x,y) + S(x,y) = exp( Integral C(y,x) dx ).
(4b) C(y,x) + S(y,x) = exp( Integral C(x,y) dy ).
(5a) d/dx S(x,y) = C(x,y) * C(y,x).
(5b) d/dx C(x,y) = S(x,y) * C(y,x).
(5c) d/dy S(y,x) = C(y,x) * C(x,y).
(5d) d/dy C(y,x) = S(y,x) * C(x,y).
Introducing function D(x,y) completes the symmetric relations as follows.
(6a) D(x,y) = Integral S(y,x) * C(x,y) dx.
(6b) D(y,x) = Integral S(x,y) * C(y,x) dy.
(7a) S(x,y) = sinh(x) + Integral C(x,y) * D(x,y) dy.
(7b) S(y,x) = sinh(y) + Integral C(y,x) * D(y,x) dx.
(7c) C(x,y) = cosh(x) + Integral S(x,y) * D(x,y) dy.
(7d) C(y,x) = cosh(y) + Integral S(y,x) * D(y,x) dx.
(8a) C(x,y) + S(x,y) = exp( x + Integral D(x,y) dy ).
(8b) C(y,x) + S(y,x) = exp( y + Integral D(y,x) dx ).
(9a) Integral C(y,x) dx = x + Integral D(x,y) dy.
(9b) Integral C(x,y) dy = y + Integral D(y,x) dx.
(10a) d/dy S(x,y) = C(x,y) * D(x,y).
(10b) d/dy C(x,y) = S(x,y) * D(x,y).
(10c) d/dx S(y,x) = C(y,x) * D(y,x).
(10d) d/dx C(y,x) = S(y,x) * D(y,x).
(10e) d/dx D(x,y) = S(y,x) * C(x,y).
(10f) d/dy D(y,x) = S(x,y) * C(y,x).
For brevity, let Cx = C(x,y), Cy = C(y,x), Sx = S(x,y), Sy = S(y,x), Dx = D(x,y), Dy = D(y,x), then further relations may be written as follows.
(11a) Cx*Cy + Sx*Sy = cosh(y) + Integral (Cy + Dy)*(Sx*Cy + Cx*Sy) dx.
(11b) Sx*Cy + Cx*Sy = sinh(y) + Integral (Cy + Dy)*(Cx*Cy + Sx*Sy) dx.
(11c) Cx*Cy + Sx*Sy = cosh(x) + Integral (Cx + Dx)*(Sx*Cy + Cx*Sy) dy.
(11d) Sx*Cy + Cx*Sy = sinh(x) + Integral (Cx + Dx)*(Cx*Cy + Sx*Sy) dy.
(12a) (Cx + Sx)*(Cy + Sy) = exp( y + Integral Cy + Dy dx ).
(12b) (Cx + Sx)*(Cy + Sy) = exp( x + Integral Cx + Dx dy ).
(12c) (Cx + Sx)*(Cy + Sy) = exp( x + y + Integral Dx dy + Integral Dy dx ).
(12d) (Cx + Sx)*(Cy + Sy) = exp( x + y + Integral Integral Sx*Cy + Cx*Sy dx dy ).
(12e) x + Integral (Cx + Dx) dy = y + Integral (Cy + Dy) dx.
(13a) d/dx (Cx + Sx)*(Cy + Sy) = (Cx + Sx)*(Cy + Sy)*(Cy + Dy).
(13b) d/dy (Cx + Sx)*(Cy + Sy) = (Cx + Sx)*(Cy + Sy)*(Cx + Dx).
(14a) (Cx + Sx)*(Cy + Sy) = exp(y) + Integral (Cx + Sx)*(Cy + Sy)*(Cy + Dy) dx.
(14b) (Cx + Sx)*(Cy + Sy) = exp(x) + Integral (Cx + Sx)*(Cy + Sy)*(Cx + Dx) dy.
EXAMPLE
E.g.f. C(y,x) = Sum_{n>=0} Sum_{k=0..n} T(n,k) * x^(2*n-2*k)*y^(2*k)/(2*n)! begins
C(y,x) = 1 + (1*y^2)/2! + (12*x^2*y^2 + 1*y^4)/4! + (120*x^4*y^2 + 180*x^2*y^4 + 1*y^6)/6! + (896*x^6*y^2 + 9520*x^4*y^4 + 2632*x^2*y^6 + 1*y^8)/8! + (5760*x^8*y^2 + 369600*x^6*y^4 + 504000*x^4*y^6 + 37080*x^2*y^8 + 1*y^10)/10! + (33792*x^10*y^2 + 12735360*x^8*y^4 + 57376704*x^6*y^6 + 23562000*x^4*y^8 + 487476*x^2*y^10 + 1*y^12)/12! + (186368*x^12*y^2 + 399246848*x^10*y^4 + 5256451200*x^8*y^6 + 6645999360*x^6*y^8 + 1039654616*x^4*y^10 + 6045676*x^2*y^12 + 1*y^14)/14! + (983040*x^14*y^2 + 11498905600*x^12*y^4 + 427859367936*x^10*y^6 + 1336544352000*x^8*y^8 + 674286412800*x^6*y^10 + 44074736160*x^4*y^12 + 71745360*x^2*y^14 + 1*y^16)/16! + ...
This series may be defined by
C(y,x) = cosh( Integral C(x,y) dy ), and
C(x,y) = cosh( Integral C(y,x) dx ).
TRIANGLE.
This triangle of coefficients T(n,k) of x^(2*n-2*k)*y^(2*k)/(2*n)! in C(y,x) starts
1;
0, 1;
0, 12, 1;
0, 120, 180, 1;
0, 896, 9520, 2632, 1;
0, 5760, 369600, 504000, 37080, 1;
0, 33792, 12735360, 57376704, 23562000, 487476, 1;
0, 186368, 399246848, 5256451200, 6645999360, 1039654616, 6045676, 1;
0, 983040, 11498905600, 427859367936, 1336544352000, 674286412800, 44074736160, 71745360, 1;
0, 5013504, 308405698560, 32219490680832, 224718683904000, 271641150443520, 63624274826112, 1793634471360, 823269744, 1; ...
PROG
(PARI) {T(n, k) = my(Sx=x, Sy=y, Cx=1, Cy=1); for(i=1, 2*n,
Sx = intformal( Cx*Cy +x*O(x^(2*n)), x);
Cx = 1 + intformal( Sx*Cy, x);
Sy = intformal( Cy*Cx +y*O(y^(2*k)), y);
Cy = 1 + intformal( Sy*Cx, y));
(2*n)! *polcoeff(polcoeff(Cy, 2*n-2*k, x), 2*k, y)}
for(n=0, 10, for(k=0, n, print1( T(n, k), ", ")); print(""))
CROSSREFS
Cf. A322222.
Sequence in context: A012453 A284453 A012454 * A370332 A370432 A325827
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Jan 01 2019
STATUS
approved