OFFSET
1,2
COMMENTS
The Bell transform of A003027(n+1). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 18 2016
LINKS
Alois P. Heinz, Rows n = 1..32, flattened
FORMULA
E.g.f. for column k: log(A(x))^k/k! where A(x) is the e.g.f. for A053763.
EXAMPLE
1
3 1
54 9 1
3834 243 18 1
1027080 20790 675 30 1
MAPLE
T:= (n, k)-> coeff(series(log(add(2^(i^2-i) *x^i/i!, i=0..n))^k /k!,
x, n+1), x, n) *n!:
seq(seq(T(n, k), k=1..n), n=1..10); # Alois P. Heinz, May 01 2011
MATHEMATICA
a= Sum[4^Binomial[n, 2]x^n/n!, {n, 0, 10}];
Transpose[Map[Drop[#, 1] &, Table[Range[0, 10]! CoefficientList[Series[Log[a]^n/n!, {x, 0, 10}], x], {n, 1, 10}]]] // Grid
PROG
# Adds a column 1, 0, 0, 0, ... at the left side of the triangle.
bell_matrix(lambda n: A003027(n+1), 10) # Peter Luschny, Jan 18 2016
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Geoffrey Critzer, May 01 2011
EXTENSIONS
Name clarified by Andrew Howroyd, Jan 11 2022
STATUS
approved