login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A189898
Triangular array read by rows. T(n,k) is the number of digraphs with n labeled nodes having exactly k undirected (or weak) components, n >= 1, 1 <= k <= n.
4
1, 3, 1, 54, 9, 1, 3834, 243, 18, 1, 1027080, 20790, 675, 30, 1, 1067308488, 6364170, 67635, 1485, 45, 1, 4390480193904, 7543111716, 23031540, 171045, 2835, 63, 1, 72022346388181584, 35217115838604, 30469951764, 63580545, 370440, 4914, 84, 1
OFFSET
1,2
COMMENTS
The Bell transform of A003027(n+1). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 18 2016
LINKS
FORMULA
E.g.f. for column k: log(A(x))^k/k! where A(x) is the e.g.f. for A053763.
EXAMPLE
1
3 1
54 9 1
3834 243 18 1
1027080 20790 675 30 1
MAPLE
T:= (n, k)-> coeff(series(log(add(2^(i^2-i) *x^i/i!, i=0..n))^k /k!,
x, n+1), x, n) *n!:
seq(seq(T(n, k), k=1..n), n=1..10); # Alois P. Heinz, May 01 2011
MATHEMATICA
a= Sum[4^Binomial[n, 2]x^n/n!, {n, 0, 10}];
Transpose[Map[Drop[#, 1] &, Table[Range[0, 10]! CoefficientList[Series[Log[a]^n/n!, {x, 0, 10}], x], {n, 1, 10}]]] // Grid
PROG
(Sage) # uses[bell_matrix from A264428, A003027]
# Adds a column 1, 0, 0, 0, ... at the left side of the triangle.
bell_matrix(lambda n: A003027(n+1), 10) # Peter Luschny, Jan 18 2016
CROSSREFS
Column 1 = A003027, row sums = A053763, lower diagonal = A045943.
Sequence in context: A322730 A292425 A095988 * A082525 A162221 A213127
KEYWORD
nonn,tabl
AUTHOR
Geoffrey Critzer, May 01 2011
EXTENSIONS
Name clarified by Andrew Howroyd, Jan 11 2022
STATUS
approved