login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A369756
Expansion of e.g.f. exp( (1 - (1+x)^5)/5 ).
2
1, -1, -3, -1, 49, 255, -275, -13105, -83775, 170495, 8290045, 69257055, -111005135, -9684015745, -109196883795, -31470300625, 17728458119425, 276531029694975, 904537471692925, -44728487203650625, -1000823562359108175, -7110596979389965825
OFFSET
0,3
LINKS
Eric Weisstein's World of Mathematics, Bell Polynomial.
FORMULA
a(0) = 1; a(n) = -(n-1)! * Sum_{k=1..min(5,n)} binomial(4,k-1) * a(n-k)/(n-k)!.
a(n) = Sum_{k=0..n} 5^k * Stirling1(n,k) * Bell_k(-1/5), where Bell_n(x) is n-th Bell polynomial.
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp((1-(1+x)^5)/5)))
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, Jan 31 2024
STATUS
approved