login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A049427
Row sums of triangle A049424.
6
1, 1, 5, 25, 145, 1025, 8245, 72745, 704705, 7424065, 83940805, 1012504505, 12972555025, 175624847425, 2501468566325, 37364323364425, 583569693556225, 9504040277271425, 161021013457176325, 2832196631069755225, 51619359912771959825
OFFSET
0,3
LINKS
W. Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
FORMULA
E.g.f.: exp((-1+(1+x)^5)/5).
a(n) = n! * sum(k=0..n, sum(j=0..k, binomial(5*j,n) * (-1)^(k-j)/(5^k * (k-j)!*j!))). - Vladimir Kruchinin, Feb 07 2011
D-finite with recurrence a(n) -a(n-1) +4*(-n+1)*a(n-2) -6*(n-1)*(n-2)*a(n-3) -4*(n-1)*(n-2)*(n-3)*a(n-4) -(n-1)*(n-2)*(n-3)*(n-4)*a(n-5)=0. - R. J. Mathar, Jun 23 2023
a(n) = Sum_{k=0..n} Stirling1(n,k) * A005011(k). - Seiichi Manyama, Jan 31 2024
CROSSREFS
Column of A293991.
Row sums of A157394.
Cf. A005011.
Sequence in context: A366221 A371725 A366499 * A121639 A098349 A098212
KEYWORD
easy,nonn
STATUS
approved