Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Jan 31 2024 08:05:03
%S 1,1,5,25,145,1025,8245,72745,704705,7424065,83940805,1012504505,
%T 12972555025,175624847425,2501468566325,37364323364425,
%U 583569693556225,9504040277271425,161021013457176325,2832196631069755225,51619359912771959825
%N Row sums of triangle A049424.
%H Seiichi Manyama, <a href="/A049427/b049427.txt">Table of n, a(n) for n = 0..510</a>
%H W. Lang, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL3/LANG/lang.html">On generalizations of Stirling number triangles</a>, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
%F E.g.f.: exp((-1+(1+x)^5)/5).
%F a(n) = n! * sum(k=0..n, sum(j=0..k, binomial(5*j,n) * (-1)^(k-j)/(5^k * (k-j)!*j!))). - _Vladimir Kruchinin_, Feb 07 2011
%F D-finite with recurrence a(n) -a(n-1) +4*(-n+1)*a(n-2) -6*(n-1)*(n-2)*a(n-3) -4*(n-1)*(n-2)*(n-3)*a(n-4) -(n-1)*(n-2)*(n-3)*(n-4)*a(n-5)=0. - _R. J. Mathar_, Jun 23 2023
%F a(n) = Sum_{k=0..n} Stirling1(n,k) * A005011(k). - _Seiichi Manyama_, Jan 31 2024
%Y Column of A293991.
%Y Row sums of A157394.
%Y Cf. A005011.
%K easy,nonn
%O 0,3
%A _Wolfdieter Lang_