The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A322220 E.g.f. S(x,y) = Integral C(x,y)*C(y,x) dx such that C(x,y)^2 - S(x,y)^2 = 1 and C(y,x) = 1 + Integral S(y,x)*C(x,y) dy, where S(x,y) = Sum_{n>=0} Sum_{k=0..n} T(n,k) * x^(2*n+1-2*k)*y^(2*k)/((2*n+1-2*k)!*(2*k)!), as a triangle of coefficients T(n,k) read by rows. 8
 1, 1, 1, 1, 5, 1, 1, 33, 33, 1, 1, 277, 561, 277, 1, 1, 2465, 10545, 10545, 2465, 1, 1, 22149, 220065, 368213, 220065, 22149, 1, 1, 199297, 4983681, 13530881, 13530881, 4983681, 199297, 1, 1, 1793621, 118758993, 532981813, 799527361, 532981813, 118758993, 1793621, 1, 1, 16142529, 2905863441, 22355025777, 48737171169, 48737171169, 22355025777, 2905863441, 16142529, 1, 1, 145282693, 71982945345, 986147170485, 3116925490785, 4360363161285, 3116925490785, 986147170485, 71982945345, 145282693, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS See A322730 for another description of the e.g.f. of this sequence: T(n,k) = A322730(n,k)/binomial(2*n+1,2*k). This triangle is an unsigned version of A367380. LINKS Paul D. Hanna, Table of n, a(n) for n = 0..1274 terms of this triangle as read by rows 0..50 FORMULA The special functions S(x,y), C(x,y), and D(x,y) satisfy the following relations. (1a) S(x,y) = Integral C(x,y) * C(y,x) dx. (1b) S(y,x) = Integral C(y,x) * C(x,y) dy. (1c) C(x,y) = 1 + Integral S(x,y) * C(y,x) dx. (1d) C(y,x) = 1 + Integral S(y,x) * C(x,y) dy. (2a) C(x,y)^2 - S(x,y)^2 = 1. (2b) C(y,x)^2 - S(y,x)^2 = 1. (3a) S(x,y) = sinh( Integral C(y,x) dx ). (3b) S(y,x) = sinh( Integral C(x,y) dy ). (3c) C(x,y) = cosh( Integral C(y,x) dx ). (3d) C(y,x) = cosh( Integral C(x,y) dy ). (4a) C(x,y) + S(x,y) = exp( Integral C(y,x) dx ). (4b) C(y,x) + S(y,x) = exp( Integral C(x,y) dy ). (5a) d/dx S(x,y) = C(x,y) * C(y,x). (5b) d/dx C(x,y) = S(x,y) * C(y,x). (5c) d/dy S(y,x) = C(y,x) * C(x,y). (5d) d/dy C(y,x) = S(y,x) * C(x,y). Introducing function D(x,y) completes the symmetric relations as follows. (6a) D(x,y) = Integral S(y,x) * C(x,y) dx. (6b) D(y,x) = Integral S(x,y) * C(y,x) dy. (7a) S(x,y) = sinh(x) + Integral C(x,y) * D(x,y) dy. (7b) S(y,x) = sinh(y) + Integral C(y,x) * D(y,x) dx. (7c) C(x,y) = cosh(x) + Integral S(x,y) * D(x,y) dy. (7d) C(y,x) = cosh(y) + Integral S(y,x) * D(y,x) dx. (8a) C(x,y) + S(x,y) = exp( x + Integral D(x,y) dy ). (8b) C(y,x) + S(y,x) = exp( y + Integral D(y,x) dx ). (9a) Integral C(y,x) dx = x + Integral D(x,y) dy. (9b) Integral C(x,y) dy = y + Integral D(y,x) dx. (10a) d/dy S(x,y) = C(x,y) * D(x,y). (10b) d/dy C(x,y) = S(x,y) * D(x,y). (10c) d/dx S(y,x) = C(y,x) * D(y,x). (10d) d/dx C(y,x) = S(y,x) * D(y,x). (10e) d/dx D(x,y) = S(y,x) * C(x,y). (10f) d/dy D(y,x) = S(x,y) * C(y,x). For brevity, let Cx = C(x,y), Cy = C(y,x), Sx = S(x,y), Sy = S(y,x), Dx = D(x,y), Dy = D(y,x), then further relations may be written as follows. (11a) Cx*Cy + Sx*Sy = cosh(y) + Integral (Cy + Dy)*(Sx*Cy + Cx*Sy) dx. (11b) Sx*Cy + Cx*Sy = sinh(y) + Integral (Cy + Dy)*(Cx*Cy + Sx*Sy) dx. (11c) Cx*Cy + Sx*Sy = cosh(x) + Integral (Cx + Dx)*(Sx*Cy + Cx*Sy) dy. (11d) Sx*Cy + Cx*Sy = sinh(x) + Integral (Cx + Dx)*(Cx*Cy + Sx*Sy) dy. (12a) (Cx + Sx)*(Cy + Sy) = exp( y + Integral Cy + Dy dx ). (12b) (Cx + Sx)*(Cy + Sy) = exp( x + Integral Cx + Dx dy ). (12c) (Cx + Sx)*(Cy + Sy) = exp( x + y + Integral Dx dy + Integral Dy dx ). (12d) (Cx + Sx)*(Cy + Sy) = exp( x + y + Integral Integral Sx*Cy + Cx*Sy dx dy ). (12e) x + Integral (Cx + Dx) dy = y + Integral (Cy + Dy) dx. (13a) d/dx (Cx + Sx)*(Cy + Sy) = (Cx + Sx)*(Cy + Sy)*(Cy + Dy). (13b) d/dy (Cx + Sx)*(Cy + Sy) = (Cx + Sx)*(Cy + Sy)*(Cx + Dx). (14a) (Cx + Sx)*(Cy + Sy) = exp(y) + Integral (Cx + Sx)*(Cy + Sy)*(Cy + Dy) dx. (14b) (Cx + Sx)*(Cy + Sy) = exp(x) + Integral (Cx + Sx)*(Cy + Sy)*(Cx + Dx) dy. EXAMPLE E.g.f. S(x,y) = Sum_{n>=0} Sum_{k=0..n} T(n,k) * x^(2*n+1-2*k)*y^(2*k)/((2*n+1-2*k)!*(2*k)!) begins S(x,y) = x + (1*x^3/3! + 1*x*y^2/2!) + (1*x^5/5! + 5*x^3*y^2/(3!*2!) + 1*x*y^4/4!) + (1*x^7/7! + 33*x^5*y^2/(5!*2!) + 33*x^3*y^4/(3!*4!) + 1*x*y^6/6!) + (1*x^9/9! + 277*x^7*y^2/(7!*2!) + 561*x^5*y^4/(5!*4!) + 277*x^3*y^6/(3!*6!) + 1*x*y^8/8!) + (1*x^11/11! + 2465*x^9*y^2/(9!*2!) + 10545*x^7*y^4/(7!*4!) + 10545*x^5*y^6/(5!*6!) + 2465*x^3*y^8/(3!*8!) + 1*x*y^10/10!) + (1*x^13/13! + 22149*x^11*y^2/(11!*2!) + 220065*x^9*y^4/(9!*4!) + 368213*x^7*y^6/(7!*6!) + 220065*x^5*y^8/(5!*8!) + 22149*x^3*y^10/(3!*10!) +1*x*y^12/12!) + (1*x^15/15! + 199297*x^13*y^2/(13!*2!) + 4983681*x^11*y^4/(11!*4!) + 13530881*x^9*y^6/(9!*6!) + 13530881*x^7*y^8/(7!*8!) + 4983681*x^5*y^10/(5!*10!) + 199297*x^3*y^12/(3!*12!) + 1*x*y^14/14!) + ... The series S(x,y) may be defined by S(x,y) = Integral C(x,y) * C(y,x) dx, and S(y,x) = Integral C(y,x) * C(x,y) dy, such that C(x,y)^2 = 1 + S(x,y)^2. TRIANGLE. This triangle of coefficients T(n,k) of x^(2*n+1-2*k)*y^(2*k)/((2*n+1-2*k)!*(2*k)!) in S(x,y) starts 1; 1, 1; 1, 5, 1; 1, 33, 33, 1; 1, 277, 561, 277, 1; 1, 2465, 10545, 10545, 2465, 1; 1, 22149, 220065, 368213, 220065, 22149, 1; 1, 199297, 4983681, 13530881, 13530881, 4983681, 199297, 1; 1, 1793621, 118758993, 532981813, 799527361, 532981813, 118758993, 1793621, 1; 1, 16142529, 2905863441, 22355025777, 48737171169, 48737171169, 22355025777, 2905863441, 16142529, 1; 1, 145282693, 71982945345, 986147170485, 3116925490785, 4360363161285, 3116925490785, 986147170485, 71982945345, 145282693, 1; ... RELATED SERIES. The related series C(x,y), where C(x,y)^2 - S(x,y)^2 = 1, begins C(x,y) = 1 + 1*x^2/2! + (1*x^4/4! + 2*x^2*y^2/(2!*2!)) + (1*x^6/6! + 12*x^4*y^2/(4!*2!) + 8*x^2*y^4/(2!*4!)) + (1*x^8/8! + 94*x^6*y^2/(6!*2!) + 136*x^4*y^4/(4!*4!) + 32*x^2*y^6/(2!*6!)) + (1*x^10/10! + 824*x^8*y^2/(8!*2!) + 2400*x^6*y^4/(6!*4!) + 1760*x^4*y^6/(4!*6!) + 128*x^2*y^8/(2!*8!)) + (1*x^12/12! + 7386*x^10*y^2/(10!*2!) + 47600*x^8*y^4/(8!*4!) + 62096*x^6*y^6/(6!*6!) + 25728*x^4*y^8/(4!*8!) + 512*x^2*y^10/(2!*10!)) + (1*x^14/14! + 66436*x^12*y^2/(12!*2!) + 1038616*x^10*y^4/(10!*4!) + 2213120*x^8*y^6/(8!*6!) + 1750400*x^6*y^8/(6!*8!) + 398848*x^4*y^10/(4!*10!) + 2048*x^2*y^12/(2!*12!)) + (1*x^16/16! + 597878*x^14*y^2/(14!*2!) + 24216888*x^12*y^4/(12!*4!) + 84201600*x^10*y^6/(10!*6!) + 103849600*x^8*y^8/(8!*8!) + 53428992*x^6*y^10/(6!*10!) + 6318080*x^4*y^12/(4!*12!) + 8192*x^2*y^14/(2!*14!)) + ... This series may be defined by C(x,y) = cosh( Integral C(y,x) dx ), and C(y,x) = cosh( Integral C(x,y) dy ). The related series D(x,y) = Integral S(y,x) * C(x,y) dx, begins D(x,y) = x*y + (2*x^3*y/3! + 1*x*y^3/3!) + (8*x^5*y/5! + 12*x^3*y^3/(3!*3!) + 1*x*y^5/5!) + (32*x^7*y/7! + 136*x^5*y^3/(5!*3!) + 94*x^3*y^5/(3!*5!) + 1*x*y^7/7!) + (128*x^9*y/9! + 1760*x^7*y^3/(7!*3!) + 2400*x^5*y^5/(5!*5!) + 824*x^3*y^7/(3!*7!) + 1*x*y^9/9!) + (512*x^11*y/11! + 25728*x^9*y^3/(9!*3!) + 62096*x^7*y^5/(7!*5!) + 47600*x^5*y^7/(5!*7!) + 7386*x^3*y^9/(3!*9!) + 1*x*y^11/11!) + (2048*x^13*y/13! + 398848*x^11*y^3/(11!*3!) + 1750400*x^9*y^5/(9!*5!) + 2213120*x^7*y^7/(7!*7!) + 1038616*x^5*y^9/(5!*9!) + 66436*x^3*y^11/(3!*11!) + 1*x*y^13/13!) + (8192*x^15*y/15! + 6318080*x^13*y^3/(13!*3!) + 53428992*x^11*y^5/(11!*5!) + 103849600*x^9*y^7/(9!*7!) + 84201600*x^7*y^9/(7!*9!) + 24216888*x^5*y^11/(5!*11!) + 597878*x^3*y^13/(3!*13!) + 1*x*y^15/15!) + ... PROG (PARI) {T(n, k) = my(Sx=x, Sy=y, Cx=1, Cy=1); for(i=1, 2*n, Sx = intformal( Cx*Cy +x*O(x^(2*n)), x); Cx = 1 + intformal( Sx*Cy, x); Sy = intformal( Cy*Cx +y*O(y^(2*k)), y); Cy = 1 + intformal( Sy*Cx, y)); (2*n+1-2*k)!*(2*k)! *polcoeff(polcoeff(Sx, 2*n+1-2*k, x), 2*k, y)} for(n=0, 10, for(k=0, n, print1( T(n, k), ", ")); print("")) CROSSREFS Cf. A322221, A322222, A322223, A322224, A325153 (column 1). Cf. A322730, A367380. Cf. A324610 (variant). Sequence in context: A058720 A015116 A367380 * A174790 A156691 A246051 Adjacent sequences: A322217 A322218 A322219 * A322221 A322222 A322223 KEYWORD nonn,tabl AUTHOR Paul D. Hanna, Dec 23 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 21 12:09 EDT 2024. Contains 372736 sequences. (Running on oeis4.)