login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A246051
Triangle read by rows: numerator of h(n-k)*h(k)/h(n) where h(x) = zeta(2*x)*(4^x-2), 0<=k<=n.
4
1, 1, 1, 1, 5, 1, 1, 49, 49, 1, 1, 310, 343, 310, 1, 1, 4191, 341, 341, 4191, 1, 1, 1162525, 2669667, 1374230, 2669667, 1162525, 1, 1, 1414477, 46501, 562991, 562991, 46501, 1414477, 1, 1, 13924700, 48092218, 1613300, 117628797, 1613300, 48092218, 13924700, 1
OFFSET
0,5
EXAMPLE
Triangle starts:
1
1, 1
1, 5, 1
1, 49, 49, 1
1, 310, 343, 310, 1
1, 4191, 341, 341, 4191, 1
MAPLE
h := x -> Zeta(2*x)*(4^x-2);
A246051 := (n, k) -> h(n-k)*h(k)/h(n);
seq(print(seq(numer(A246051(n, k)), k=0..n)), n=0..8);
PROG
(Sage)
h = lambda n: zeta(2*n)*(4^n-2)
A246051 = lambda n, k: h(n-k)*h(k)/h(n)
for n in range(8): [A246051(n, k).numerator() for k in (0..n)]
CROSSREFS
Cf. A246052 (denominators).
Sequence in context: A322220 A174790 A156691 * A111820 A174912 A106238
KEYWORD
nonn,frac,tabl
AUTHOR
Peter Luschny, Aug 11 2014
STATUS
approved