login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A174912
Triangle read by rows: T(n, m) = 1 + (binomial(n, m) - Eulerian(n+1, m))^2.
2
1, 1, 1, 1, 5, 1, 1, 65, 65, 1, 1, 485, 3601, 485, 1, 1, 2705, 85265, 85265, 2705, 1, 1, 12997, 1382977, 5740817, 1382977, 12997, 1, 1, 57601, 18249985, 242861057, 242861057, 18249985, 57601, 1, 1, 244037, 212576401, 7775359685, 24373454401, 7775359685, 212576401, 244037, 1
OFFSET
0,5
COMMENTS
Row sums are: {1, 2, 7, 132, 4573, 175942, 8532767, 522337288, 40349814649, 3852213868170, 446653836767587, ...}.
FORMULA
T(n, m) = 1 + (binomial(n, m) - Eulerian(n+1, m))^2, where Eulerian(n,k) = A008292(n,k).
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 5, 1;
1, 65, 65, 1;
1, 485, 3601, 485, 1;
1, 2705, 85265, 85265, 2705, 1;
1, 12997, 1382977, 5740817, 1382977, 12997, 1;
MATHEMATICA
Eulerian[n_, k_] := Sum[(-1)^j*Binomial[n + 1, j]*(k - j + 1)^n, {j, 0, k + 1}];
T[n_, m_]:= 1 + (Binomial[n, m] - Eulerian[n+1, m])^2;
Table[T[n, m], {n, 0, 12}, {m, 0, n}]//Flatten (* modified by G. C. Greubel, Apr 25 2019 *)
PROG
(PARI) Eulerian(n, k) = sum(j=0, k+1, (-1)^j*binomial(n+1, j)*(k-j+1)^n);
{T(n, k) = 1 + (binomial(n, k) - Eulerian(n+1, k))^2 };
for(n=0, 10, for(k=0, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Apr 25 2019
(Magma) Eulerian:= func< n, k | (&+[(-1)^j*Binomial(n+1, j)*(k-j+1)^n: j in [0..k+1]]) >;
[[1 + (Binomial(n, k) - Eulerian(n+1, k))^2: k in [0..n]]: n in [0..12]]; // G. C. Greubel, Apr 25 2019
(Sage)
def Eulerian(n, k): return sum((-1)^j*binomial(n+1, j)*(k-j+1)^n for j in (0..k+1))
def T(n, k): return 1 + (binomial(n, k) - Eulerian(n+1, k))^2
[[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Apr 25 2019
CROSSREFS
Cf. A008292.
Sequence in context: A156691 A246051 A111820 * A106238 A173475 A174919
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Apr 02 2010
EXTENSIONS
Edited by G. C. Greubel, Apr 25 2019
STATUS
approved