login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A174919
A symmetrical triangle sequence:q=3;c(n,q)=Product[(1 - q^i), {i, 1, n}]:t(n,m)=1 + Binomial[n, m]^2 + (c(n, q)/(c(m, q)*c(n - m, q)))^2 - 2*Binomial[n, m]*c(n, q)/(c(m, q)*c(n - m, q))
0
1, 1, 1, 1, 5, 1, 1, 101, 101, 1, 1, 1297, 15377, 1297, 1, 1, 13457, 1440001, 1440001, 13457, 1, 1, 128165, 120912017, 1146499601, 120912017, 128165, 1, 1, 1179397, 9888711365, 856987141697, 856987141697, 9888711365, 1179397, 1, 1, 10705985
OFFSET
0,5
COMMENTS
Row sums are:
{1, 2, 7, 204, 17973, 2906918, 1388579967, 1733754064920, 7023953666803081,
77158955191428018954, 2771687022147658804423779,...}.
FORMULA
q=3;
c(n,q)=Product[(1 - q^i), {i, 1, n}]:
t(n,m)=1 + Binomial[n, m]^2 + (c(n, q)/(c(m, q)*c(n - m, q)))^2 - 2*Binomial[n, m]*c(n, q)/(c(m, q)*c(n - m, q))
EXAMPLE
{1},
{1, 1},
{1, 5, 1},
{1, 101, 101, 1},
{1, 1297, 15377, 1297, 1},
{1, 13457, 1440001, 1440001, 13457, 1},
{1, 128165, 120912017, 1146499601, 120912017, 128165, 1},
{1, 1179397, 9888711365, 856987141697, 856987141697, 9888711365, 1179397, 1},
{1, 10705985, 803231797825, 629770267610177, 5762806646575105, 629770267610177, 803231797825, 10705985, 1},
{1, 96668225, 65118185933057, 460319825729437697, 38119092651701970497, 38119092651701970497, 460319825729437697, 65118185933057, 96668225, 1},
{1, 871076197, 5276043118413377, 335868945990739969601, 250778440860581543132225, 2269458391982426259240977, 250778440860581543132225, 335868945990739969601, 5276043118413377, 871076197, 1}
MATHEMATICA
Clear[t, n, m, c, q]
c[n_, q_] = Product[(1 - q^i), {i, 1, n}]
t[n_, m_, q_] = 1 + Binomial[n, m]^2 + (c[n, q]/(c[m, q]*c[n - m, q]))^2 - 2*Binomial[n, m]*c[n, q]/(c[m, q]*c[n - m, q])
Table[Flatten[Table[Table[t[n, m, q], {m, 0, n}], {n, 0, 10}]], {q, 2, 12}]
CROSSREFS
Sequence in context: A174912 A106238 A173475 * A156952 A158748 A351241
KEYWORD
nonn,tabl,uned
AUTHOR
Roger L. Bagula, Apr 02 2010
STATUS
approved