login
A174920
List of primes p1 such that (p1,p2) are twin primes where both 2*p1+p2 and p1+2*p2 are primes.
10
3, 5, 59, 269, 1949, 2999, 6359, 11489, 11549, 14549, 18539, 19889, 21839, 31079, 32909, 32969, 33329, 33599, 42569, 42839, 50459, 53549, 58109, 68879, 70199, 74609, 79229, 80909, 93809, 96329, 98909, 104309, 109139, 114599, 121019, 125789
OFFSET
1,1
COMMENTS
Terms >5 are congruent to 29 mod 30. - Zak Seidov, May 10 2012
Also 2*p1+p2 and p1+2*p2 are twin primes. - Zak Seidov, May 10 2012
FORMULA
From Wesley Ivan Hurt, May 03 2022: (Start)
a(n) = A132929(n) - 1.
a(n) = A177336(n) - 2. (End)
EXAMPLE
a(1)=3 because 3, 5 are twin primes and 2*3+5=11, 3+2*5=13 are also primes.
MAPLE
select(q -> isprime(q) and isprime(q+2) and isprime(3*q+2) and isprime(3*q+4), [3, 5, seq(i, i=29..200000, 30)]); # Robert Israel, May 06 2019
MATHEMATICA
lst={}; Do[p1=Prime[n]; p2=p1+2; If[PrimeQ[p2]&&PrimeQ[2*p1+p2]&&PrimeQ[p1+2*p2], AppendTo[lst, p1]], {n, 8!}]; lst
PROG
(Magma) [NthPrime(n): n in [1..12000] | forall{p: p in [NthPrime(n)+2, 3*NthPrime(n)+2, 3*NthPrime(n)+4] | IsPrime(p)}]; // Bruno Berselli, May 10 2012
KEYWORD
nonn
AUTHOR
STATUS
approved