The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A111820 Triangle P, read by rows, that satisfies [P^5](n,k) = P(n+1,k+1) for n>=k>=0, also [P^(5*m)](n,k) = [P^m](n+1,k+1) for all m, where [P^m](n,k) denotes the element at row n, column k, of the matrix power m of P, with P(0,k)=1 and P(k,k)=1 for all k>=0. 7
1, 1, 1, 1, 5, 1, 1, 55, 25, 1, 1, 2055, 1525, 125, 1, 1, 291430, 311525, 38875, 625, 1, 1, 165397680, 239305275, 40338875, 975625, 3125, 1, 1, 390075741430, 735920617775, 157056792000, 5077475625, 24409375, 15625, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,5
COMMENTS
Also P(n,k) = the partitions of (5^n - 5^(n-k)) into powers of 5 <= 5^(n-k).
LINKS
FORMULA
Let q=5; the g.f. of column k of P^m (ignoring leading zeros) equals: 1 + Sum_{n>=1} (m*q^k)^n/n! * Product_{j=0..n-1} L(q^j*x) where L(x) satisfies: x/(1-x) = Sum_{n>=1} Product_{j=0..n-1} L(q^j*x)/(j+1) and L(x) equals the g.f. of column 0 of the matrix log of P (A111824).
EXAMPLE
Let q=5; the g.f. of column k of matrix power P^m is:
1 + (m*q^k)*L(x) + (m*q^k)^2/2!*L(x)*L(q*x) +
(m*q^k)^3/3!*L(x)*L(q*x)*L(q^2*x) +
(m*q^k)^4/4!*L(x)*L(q*x)*L(q^2*x)*L(q^3*x) + ...
where L(x) satisfies:
x/(1-x) = L(x) + L(x)*L(q*x)/2! + L(x)*L(q*x)*L(q^2*x)/3! + ...
and L(x) = x - 3/2!*x^2 + 16/3!*x^3 + 2814/4!*x^4 +... (A111824).
Thus the g.f. of column 0 of matrix power P^m is:
1 + m*L(x) + m^2/2!*L(x)*L(5*x) + m^3/3!*L(x)*L(5*x)*L(5^2*x) +
m^4/4!*L(x)*L(5*x)*L(5^2*x)*L(5^3*x) + ...
Triangle P begins:
1;
1,1;
1,5,1;
1,55,25,1;
1,2055,1525,125,1;
1,291430,311525,38875,625,1;
1,165397680,239305275,40338875,975625,3125,1; ...
where P^5 shifts columns left and up one place:
1;
5,1;
55,25,1;
2055,1525,125,1;
291430,311525,38875,625,1; ...
PROG
(PARI) P(n, k, q=5)=local(A=Mat(1), B); if(n<k || k<0, 0, for(m=1, n+1, B=matrix(m, m); for(i=1, m, for(j=1, i, if(j==i || j==1, B[i, j]=1, B[i, j]=(A^q)[i-1, j-1]); )); A=B); return(A[n+1, k+1]))
CROSSREFS
Cf. A111821 (column 1), A111822 (row sums), A111823 (matrix log); triangles: A110503 (q=-1), A078121 (q=2), A078122 (q=3), A078536 (q=4), A111825 (q=6), A111830 (q=7), A111835 (q=8).
Sequence in context: A174790 A156691 A246051 * A174912 A106238 A173475
KEYWORD
nonn,tabl
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 29 00:29 EDT 2024. Contains 372921 sequences. (Running on oeis4.)