login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A111820
Triangle P, read by rows, that satisfies [P^5](n,k) = P(n+1,k+1) for n>=k>=0, also [P^(5*m)](n,k) = [P^m](n+1,k+1) for all m, where [P^m](n,k) denotes the element at row n, column k, of the matrix power m of P, with P(0,k)=1 and P(k,k)=1 for all k>=0.
7
1, 1, 1, 1, 5, 1, 1, 55, 25, 1, 1, 2055, 1525, 125, 1, 1, 291430, 311525, 38875, 625, 1, 1, 165397680, 239305275, 40338875, 975625, 3125, 1, 1, 390075741430, 735920617775, 157056792000, 5077475625, 24409375, 15625, 1
OFFSET
0,5
COMMENTS
Also P(n,k) = the partitions of (5^n - 5^(n-k)) into powers of 5 <= 5^(n-k).
FORMULA
Let q=5; the g.f. of column k of P^m (ignoring leading zeros) equals: 1 + Sum_{n>=1} (m*q^k)^n/n! * Product_{j=0..n-1} L(q^j*x) where L(x) satisfies: x/(1-x) = Sum_{n>=1} Product_{j=0..n-1} L(q^j*x)/(j+1) and L(x) equals the g.f. of column 0 of the matrix log of P (A111824).
EXAMPLE
Let q=5; the g.f. of column k of matrix power P^m is:
1 + (m*q^k)*L(x) + (m*q^k)^2/2!*L(x)*L(q*x) +
(m*q^k)^3/3!*L(x)*L(q*x)*L(q^2*x) +
(m*q^k)^4/4!*L(x)*L(q*x)*L(q^2*x)*L(q^3*x) + ...
where L(x) satisfies:
x/(1-x) = L(x) + L(x)*L(q*x)/2! + L(x)*L(q*x)*L(q^2*x)/3! + ...
and L(x) = x - 3/2!*x^2 + 16/3!*x^3 + 2814/4!*x^4 +... (A111824).
Thus the g.f. of column 0 of matrix power P^m is:
1 + m*L(x) + m^2/2!*L(x)*L(5*x) + m^3/3!*L(x)*L(5*x)*L(5^2*x) +
m^4/4!*L(x)*L(5*x)*L(5^2*x)*L(5^3*x) + ...
Triangle P begins:
1;
1,1;
1,5,1;
1,55,25,1;
1,2055,1525,125,1;
1,291430,311525,38875,625,1;
1,165397680,239305275,40338875,975625,3125,1; ...
where P^5 shifts columns left and up one place:
1;
5,1;
55,25,1;
2055,1525,125,1;
291430,311525,38875,625,1; ...
PROG
(PARI) P(n, k, q=5)=local(A=Mat(1), B); if(n<k || k<0, 0, for(m=1, n+1, B=matrix(m, m); for(i=1, m, for(j=1, i, if(j==i || j==1, B[i, j]=1, B[i, j]=(A^q)[i-1, j-1]); )); A=B); return(A[n+1, k+1]))
CROSSREFS
Cf. A111821 (column 1), A111822 (row sums), A111823 (matrix log); triangles: A110503 (q=-1), A078121 (q=2), A078122 (q=3), A078536 (q=4), A111825 (q=6), A111830 (q=7), A111835 (q=8).
Sequence in context: A174790 A156691 A246051 * A174912 A106238 A173475
KEYWORD
nonn,tabl
AUTHOR
STATUS
approved