login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A111817
Number of partitions of 3*4^n into powers of 4, also equals column 1 of triangle A078536, which shifts columns left and up under matrix 4th power.
6
1, 4, 28, 524, 29804, 5423660, 3276048300, 6744720496300, 48290009081437356, 1221415413140406958252, 110523986015743458745929900, 36150734459755630877180158951596
OFFSET
0,2
COMMENTS
Let q=4; a(n) equals the partitions of (q-1)*q^n into powers of q, or, the coefficient of x^((q-1)*q^n) in 1/Product_{j>=0}(1-x^(q^j)).
LINKS
FORMULA
a(n) = [x^(3*4^n)] 1/Product_{j>=0}(1-x^(4^j)).
PROG
(PARI) a(n, q=4)=local(A=Mat(1), B); if(n<0, 0, for(m=1, n+2, B=matrix(m, m); for(i=1, m, for(j=1, i, if(j==i || j==1, B[i, j]=1, B[i, j]=(A^q)[i-1, j-1]); )); A=B); return(A[n+2, 2]))
CROSSREFS
Cf. A078536 (triangle), A002577 (q=2), A078124 (q=3), A111821 (q=5), A111826 (q=6), A111831 (q=7), A111836 (q=8).
Sequence in context: A197872 A203220 A338816 * A134048 A091969 A101346
KEYWORD
nonn
AUTHOR
STATUS
approved