The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A156691 Triangle T(n, k, m) = t(n,m)/( t(k,m) * t(n-k,m) ) with T(n, 0, m) = T(n, n, m) = 1, where t(n, m) = Product_{j=1..n} Product_{i=1..j-1} ( 1 - (m+1)*(i+1) ) and m = 2, read by rows. 8
 1, 1, 1, 1, -5, 1, 1, 40, 40, 1, 1, -440, 3520, -440, 1, 1, 6160, 542080, 542080, 6160, 1, 1, -104720, 129015040, -1419165440, 129015040, -104720, 1, 1, 2094400, 43865113600, 6755227494400, 6755227494400, 43865113600, 2094400, 1, 1, -48171200, 20177952256000, -52825879006208000, 739562306086912000, -52825879006208000, 20177952256000, -48171200, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Row sums are: {1, 2, -3, 82, 2642, 1096482, -1161344798, 13598189404802, 633950903882665602, 301999235305843794118402, ...}. LINKS G. C. Greubel, Rows n = 0..30 of the triangle, flattened FORMULA T(n, k, m) = t(n,m)/( t(k,m) * t(n-k,m) ) with T(n, 0, m) = T(n, n, m) = 1, where t(n, m) = Product_{j=1..n} Product_{i=1..j-1} ( 1 - (m+1)*(i+1) ) and m = 2. T(n, k, m, p, q) = (-p*(m+1))^(k*(n-k)) * (f(n,m,p,q)/(f(k,m,p,q)*f(n-k,m,p,q))) where Product_{j=1..n} Pochhammer( (q*(m+1) -1)/(p*(m+1)), j) for (m, p, q) = (2, 1, 1). - G. C. Greubel, Feb 25 2021 EXAMPLE Triangle begins as: 1; 1, 1; 1, -5, 1; 1, 40, 40, 1; 1, -440, 3520, -440, 1; 1, 6160, 542080, 542080, 6160, 1; 1, -104720, 129015040, -1419165440, 129015040, -104720, 1; 1, 2094400, 43865113600, 6755227494400, 6755227494400, 43865113600, 2094400, 1; MATHEMATICA (* First program *) t[n_, k_]:= If[k==0, n!, Product[1 -(i+1)*(k+1), {j, n}, {i, 0, j-1}] ]; T[n_, k_, m_]:= If[n==0, 1, t[n, m]/(t[k, m]*t[n-k, m])]; Table[T[n, k, 2], {n, 0, 12}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Feb 25 2021 *) (* Second program *) f[n_, m_, p_, q_]:= Product[Pochhammer[(q*(m+1) -1)/(p*(m+1)), j], {j, n}]; T[n_, k_, m_, p_, q_]:= (-p*(m+1))^(k*(n-k))*(f[n, m, p, q]/(f[k, m, p, q]*f[n-k, m, p, q])); Table[T[n, k, 2, 1, 1], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Feb 25 2021 *) PROG (Sage) @CachedFunction def f(n, m, p, q): return product( rising_factorial( (q*(m+1)-1)/(p*(m+1)), j) for j in (1..n)) def T(n, k, m, p, q): return (-p*(m+1))^(k*(n-k))*(f(n, m, p, q)/(f(k, m, p, q)*f(n-k, m, p, q))) flatten([[T(n, k, 2, 1, 1) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 25 2021 (Magma) f:= func< n, m, p, q | n eq 0 select 1 else m eq 0 select Factorial(n) else (&*[ 1 -(p*i+q)*(m+1): i in [0..j], j in [0..n-1]]) >; T:= func< n, k, m, p, q | f(n, m, p, q)/(f(k, m, p, q)*f(n-k, m, p, q)) >; [T(n, k, 2, 1, 1): k in [0..n], n in [0..10]]; // G. C. Greubel, Feb 25 2021 CROSSREFS Cf. A007318 (m=0), A156690 (m=1), this sequence (m=2), A156692 (m=3). Cf. A156693, A156697, A156725. Sequence in context: A367380 A322220 A174790 * A246051 A111820 A174912 Adjacent sequences: A156688 A156689 A156690 * A156692 A156693 A156694 KEYWORD sign,tabl AUTHOR Roger L. Bagula, Feb 13 2009 EXTENSIONS Edited by G. C. Greubel, Feb 25 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 28 00:20 EDT 2024. Contains 372900 sequences. (Running on oeis4.)