The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A367380 E.g.f. S(x,y) = Integral C(x,y)*C(y,x) dx such that C(x,y)^2 + S(x,y)^2 = 1 and C(y,x) = 1 - Integral S(y,x)*C(x,y) dy, as a triangle of coefficients T(n,k) read by rows. 4
1, -1, -1, 1, 5, 1, -1, -33, -33, -1, 1, 277, 561, 277, 1, -1, -2465, -10545, -10545, -2465, -1, 1, 22149, 220065, 368213, 220065, 22149, 1, -1, -199297, -4983681, -13530881, -13530881, -4983681, -199297, -1, 1, 1793621, 118758993, 532981813, 799527361, 532981813, 118758993, 1793621, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,5
COMMENTS
This triangle is a signed version of triangle A322220.
See A367381 for the coefficients in the related function C(x,y).
LINKS
FORMULA
E.g.f. S(x,y) = Sum_{n>=0} Sum_{k=0..n} T(n,k) * x^(2*n+1-2*k)*y^(2*k)/((2*n+1-2*k)!*(2*k)!) along with the related functions Cx = C(x,y), Cy = C(y,x), Sx = S(x,y), Sy = S(y,x), Gx = G(x,y), Gy = G(y,x), satisfy the following relations.
(1.a) Cx^2 + Sx^2 = 1.
(1.b) Cy^2 + Sy^2 = 1.
(2.a) d/dx Sx = Cx * Cy.
(2.b) d/dx Cx = -Sx * Cy.
(2.c) d/dx Gx = Sy * Cx.
(2.d) d/dy Sy = Cy * Cx.
(2.e) d/dy Cy = -Sy * Cx.
(2.f) d/dy Gy = Sx * Cy.
(2.g) d/dx Sy = -Cy * Gy.
(2.h) d/dx Cy = Sy * Gy.
(2.i) d/dy Sx = -Cx * Gx.
(2.j) d/dy Cx = Sx * Gx.
(3.a) Sx = Integral Cx * Cy dx.
(3.b) Sy = Integral Cy * Cx dy.
(3.c) Cx = 1 - Integral Sx * Cy dx.
(3.d) Cy = 1 - Integral Sy * Cx dy.
(3.e) Gx = Integral Sy * Cx dx.
(3.f) Gy = Integral Sx * Cy dy.
(4.a) Sx = sin( Integral Cy dx ).
(4.b) Sy = sin( Integral Cx dy ).
(4.c) Cx = cos( Integral Cy dx ).
(4.d) Cy = cos( Integral Cx dy ).
(5.a) Sx = sin(x) - Integral Cx * Gx dy.
(5.b) Sy = sin(y) - Integral Cy * Gy dx.
(5.c) Cx = cos(x) + Integral Sx * Gx dy.
(5.d) Cy = cos(y) + Integral Sy * Gy dx.
(6.a) Integral Cy dx = x - Integral Gx dy.
(6.b) Integral Cx dy = y - Integral Gy dx.
(6.c) x + Integral (Cx - Gx) dy = y + Integral (Cy - Gy) dx.
(7.a) (Cx + i*Sx) = exp( i*Integral Cy dx ).
(7.b) (Cy + i*Sy) = exp( i*Integral Cx dy ).
(7.c) (Cx + i*Sx) = exp( i*x - i*Integral Gx dy ).
(7.d) (Cy + i*Sy) = exp( i*y - i*Integral Gy dx ).
(8.a) (Cx*Cy - Sx*Sy) = cos(y) - Integral (Sx*Cy + Cx*Sy)*(Cy - Gy) dx.
(8.b) (Cx*Cy - Sx*Sy) = cos(x) - Integral (Sx*Cy + Cx*Sy)*(Cx - Gx) dy.
(8.c) (Sx*Cy + Cx*Sy) = sin(y) + Integral (Cx*Cy - Sx*Sy)*(Cy - Gy) dx.
(8.d) (Sx*Cy + Cx*Sy) = sin(x) + Integral (Cx*Cy - Sx*Sy)*(Cx - Gx) dy.
(9.a) (Cx + i*Sx)*(Cy + i*Sy) = exp(i*y) + i*Integral (Cx + i*Sx)*(Cy + i*Sy)*(Cy - Gy) dx.
(9.b) (Cx + i*Sx)*(Cy + i*Sy) = exp(i*x) + i*Integral (Cx + i*Sx)*(Cy + i*Sy)*(Cx - Gx) dy.
(9.c) (Cx + i*Sx)*(Cy + i*Sy) = exp( i*y + i*Integral (Cy - Gy) dx ).
(9.d) (Cx + i*Sx)*(Cy + i*Sy) = exp( i*x + i*Integral (Cx - Gx) dy ).
(9.e) (Cx + i*Sx)*(Cy + i*Sy) = exp( i*(x + y) - i*(Integral Gx dy) - i*(Integral Gy dx) ).
(9.f) (Cx + i*Sx)*(Cy + i*Sy) = exp( i*(x + y) - i*Integral Integral (Sx*Cy + Cx*Sy) dx dy ).
EXAMPLE
E.g.f. S(x,y) = Sum_{n>=0} Sum_{k=0..n} T(n,k) * x^(2*n+1-2*k)*y^(2*k)/((2*n+1-2*k)!*(2*k)!) begins
S(x,y) = 1*x - (1*x^3/3! + 1*x*y^2/(1!*2!)) + (1*x^5/5! + 5*x^3*y^2/(3!*2!) + 1*x*y^4/(1!*4!)) - (1*x^7/7! + 33*x^5*y^2/(5!*2!) + 33*x^3*y^4/(3!*4!) + 1*x*y^6/(1!*6!)) + (1*x^9/9! + 277*x^7*y^2/(7!*2!) + 561*x^5*y^4/(5!*4!) + 277*x^3*y^6/(3!*6!) + 1*x*y^8/(1!*8!)) - (1*x^11/11! + 2465*x^9*y^2/(9!*2!) + 10545*x^7*y^4/(7!*4!) + 10545*x^5*y^6/(5!*6!) + 2465*x^3*y^8/(3!*8!) + 1*x*y^10/(1!*10!)) + (1*x^13/13! + 22149*x^11*y^2/(11!*2!) + 220065*x^9*y^4/(9!*4!) + 368213*x^7*y^6/(7!*6!) + 220065*x^5*y^8/(5!*8!) + 22149*x^3*y^10/(3!*10!) + 1*x*y^12/(1!*12!)) - (1*x^15/15! + 199297*x^13*y^2/(13!*2!) + 4983681*x^11*y^4/(11!*4!) + 13530881*x^9*y^6/(9!*6!) + 13530881*x^7*y^8/(7!*8!) + 4983681*x^5*y^10/(5!*10!) + 199297*x^3*y^12/(3!*12!) + 1*x*y^14/(1!*14!)) + ...
The series S(x,y) may be defined by
S(x,y) = Integral C(x,y) * C(y,x) dx such that C(x,y)^2 + S(x,y)^2 = 1.
This triangle of coefficients T(n,k) of x^(2*n+1-2*k)*y^(2*k)/((2*n+1-2*k)!*(2*k)!) in S(x,y) begins
1;
-1, -1;
1, 5, 1;
-1, -33, -33, -1;
1, 277, 561, 277, 1;
-1, -2465, -10545, -10545, -2465, -1;
1, 22149, 220065, 368213, 220065, 22149, 1;
-1, -199297, -4983681, -13530881, -13530881, -4983681, -199297, -1;
1, 1793621, 118758993, 532981813, 799527361, 532981813, 118758993, 1793621, 1;
-1, -16142529, -2905863441, -22355025777, -48737171169, -48737171169, -22355025777, -2905863441, -16142529, -1; ...
RELATED SERIES.
The related series C(x,y) (cf. A367381), where C(x,y)^2 + S(x,y)^2 = 1, begins
C(x,y) = 1 - 1*x^2/2! + (1*x^4/4! + 2*x^2*y^2/(2!*2!)) - (1*x^6/6! + 12*x^4*y^2/(4!*2!) + 8*x^2*y^4/(2!*4!)) + (1*x^8/8! + 94*x^6*y^2/(6!*2!) + 136*x^4*y^4/(4!*4!) + 32*x^2*y^6/(2!*6!)) - (1*x^10/10! + 824*x^8*y^2/(8!*2!) + 2400*x^6*y^4/(6!*4!) + 1760*x^4*y^6/(4!*6!) + 128*x^2*y^8/(2!*8!)) + (1*x^12/12! + 7386*x^10*y^2/(10!*2!) + 47600*x^8*y^4/(8!*4!) + 62096*x^6*y^6/(6!*6!) + 25728*x^4*y^8/(4!*8!) + 512*x^2*y^10/(2!*10!)) - (1*x^14/14! + 66436*x^12*y^2/(12!*2!) + 1038616*x^10*y^4/(10!*4!) + 2213120*x^8*y^6/(8!*6!) + 1750400*x^6*y^8/(6!*8!) + 398848*x^4*y^10/(4!*10!) + 2048*x^2*y^12/(2!*12!)) + (1*x^16/16! + 597878*x^14*y^2/(14!*2!) + 24216888*x^12*y^4/(12!*4!) + 84201600*x^10*y^6/(10!*6!) + 103849600*x^8*y^8/(8!*8!) + 53428992*x^6*y^10/(6!*10!) + 6318080*x^4*y^12/(4!*12!) + 8192*x^2*y^14/(2!*14!)) + ...
This series may be defined by
C(x,y) = cos( Integral C(y,x) dx ), and
C(y,x) = cos( Integral C(x,y) dy ).
The related series G(x,y) = Integral S(y,x) * C(x,y) dx begins
G(x,y) = x*y - (2*x^3*y/3! + 1*x*y^3/3!) + (8*x^5*y/5! + 12*x^3*y^3/(3!*3!) + 1*x*y^5/5!) - (32*x^7*y/7! + 136*x^5*y^3/(5!*3!) + 94*x^3*y^5/(3!*5!) + 1*x*y^7/7!) + (128*x^9*y/9! + 1760*x^7*y^3/(7!*3!) + 2400*x^5*y^5/(5!*5!) + 824*x^3*y^7/(3!*7!) + 1*x*y^9/9!) - (512*x^11*y/11! + 25728*x^9*y^3/(9!*3!) + 62096*x^7*y^5/(7!*5!) + 47600*x^5*y^7/(5!*7!) + 7386*x^3*y^9/(3!*9!) + 1*x*y^11/11!) + (2048*x^13*y/13! + 398848*x^11*y^3/(11!*3!) + 1750400*x^9*y^5/(9!*5!) + 2213120*x^7*y^7/(7!*7!) + 1038616*x^5*y^9/(5!*9!) + 66436*x^3*y^11/(3!*11!) + 1*x*y^13/13!) - (8192*x^15*y/15! + 6318080*x^13*y^3/(13!*3!) + 53428992*x^11*y^5/(11!*5!) + 103849600*x^9*y^7/(9!*7!) + 84201600*x^7*y^9/(7!*9!) + 24216888*x^5*y^11/(5!*11!) + 597878*x^3*y^13/(3!*13!) + 1*x*y^15/15!) + ...
SPECIFIC VALUES.
At x = Pi/4, y = Pi/4,
C(Pi/4, Pi/4) = 0.831178816418434556618973541664847...
S(Pi/4, Pi/4) = 0.556005193444494963502301287189184...
G(Pi/4, Pi/4) = 0.490474107047544861372739409702074...
At x = Pi/4, y = Pi/6,
C(Pi/4, Pi/6) = 0.766334291094841251674725215860284...
S(Pi/4, Pi/6) = 0.642442024070785014731997355171410...
G(Pi/4, Pi/6) = 0.333312489674294244291205551151978...
At x = Pi/6, y = Pi/4,
C(Pi/6, Pi/4) = 0.928369578819309175865409938606631...
S(Pi/6, Pi/4) = 0.371658344616205930317584779936615...
G(Pi/6, Pi/4) = 0.350898319308070232265263489044750...
At x = Pi/6, y = Pi/6,
C(Pi/6, Pi/6) = 0.896526104547870943845048541964839...
S(Pi/6, Pi/6) = 0.442990907202642228385926280567973...
G(Pi/6, Pi/6) = 0.243469718547034805738161907279448...
At x = Pi/8, y = Pi/8,
C(Pi/8, Pi/8) = 0.934405560568629768616893625883648...
S(Pi/8, Pi/8) = 0.356210960497322099066032510783456...
G(Pi/8, Pi/8) = 0.143654626626560254692166383052725...
PROG
(PARI) {T(n, k) = my(Sx=x, Sy=y, Cx=1, Cy=1); for(i=1, 2*n,
Sx = intformal( Cx*Cy +x*O(x^(2*n)), x);
Cx = 1 - intformal( Sx*Cy, x);
Sy = intformal( Cy*Cx +y*O(y^(2*k)), y);
Cy = 1 - intformal( Sy*Cx, y));
(2*n+1-2*k)!*(2*k)! *polcoeff(polcoeff(Sx, 2*n+1-2*k, x), 2*k, y)}
for(n=0, 10, for(k=0, n, print1( T(n, k), ", ")); print(""))
CROSSREFS
Cf. A367381 (C(x,y)), A322220.
Sequence in context: A156587 A058720 A015116 * A322220 A174790 A156691
KEYWORD
sign,tabl
AUTHOR
Paul D. Hanna, Nov 15 2023
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 13 22:21 EDT 2024. Contains 373391 sequences. (Running on oeis4.)