login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370330
Expansion of e.g.f. C(x,k) satisfying C(x,k) = cos( x*cos(k*x*C(x,k)) ), as a triangle read by rows.
4
1, -1, 0, 1, 12, 0, -1, -420, -120, 0, 1, 10248, 36400, 896, 0, -1, -196920, -4858560, -2170560, -5760, 0, 1, 3247860, 461126160, 1127738304, 102960000, 33792, 0, -1, -48361404, -35248293080, -340884800256, -187282263168, -4083183104, -186368, 0, 1, 669616080, 2290777550880, 76526954183680, 153279541958400, 25081621813248, 141360128000, 983040, 0
OFFSET
0,5
COMMENTS
The unsigned row sums equal A143601.
Signed version of triangle A370430.
A row reversal of triangle A370332.
FORMULA
E.g.f.: C(x,k) = Sum_{n>=0} Sum_{j=0..n} a(n,j) * x^(2*n)*k^(2*j)/(2*n)! along with the related functions C = C(x,k), S = S(x,k), D = D(x,k), and T = T(x,k) satisfy the following formulas.
Definition.
(1.a) (C + i*S) = exp(i*x*D).
(1.b) (D + i*k*T) = exp(i*k*x*C).
(2.a) C^2 + S^2 = 1.
(2.b) D^2 + k^2*T^2 = 1.
Circular functions.
(3.a) C = cos(x*D).
(3.b) S = sin(x*D).
(3.c) D = cos(k*x*C).
(3.d) T = (1/k) * sin(k*x*C).
(4.a) C = cos( x*cos(k*x*C) ).
(4.b) S = sin( x*cos(k*x*sqrt(1 - S^2)) ).
(4.c) D = cos( k*x*cos(x*D) ).
(4.d) T = (1/k) * sin( k*x*cos(x*sqrt(1 - k^2*T^2)) ).
(5.a) (C*D - k*S*T) = cos(x*D + k*x*C).
(5.b) (S*D + k*C*T) = sin(x*D + k*x*C).
Transformations.
(6.a) C(x, 1/k) = D(x/k, k).
(6.b) D(x, 1/k) = C(x/k, k).
(6.c) S(x, 1/k) = k * T(x/k, k).
(6.d) T(x, 1/k) = k * S(x/k, k).
(6.e) D(x, k) = C(k*x, 1/k).
(6.f) C(x, k) = D(k*x, 1/k).
(6.g) T(x, k) = (1/k) * S(k*x, 1/k).
(6.h) S(x, k) = (1/k) * T(k*x, 1/k).
Integrals.
(7.a) C = 1 - Integral S*D + x*S*D' dx.
(7.b) S = Integral C*D + x*C*D' dx.
(7.c) D = 1 - k^2 * Integral T*C + x*T*C' dx.
(7.d) T = Integral D*C + x*D*C' dx.
Derivatives (d/dx).
(8.a) C*C' = -S*S'.
(8.b) D*D' = -k^2*T*T'.
(9.a) C' = -S * (D + x*D').
(9.b) S' = C * (D + x*D').
(9.c) D' = -k^2 * T * (C + x*C').
(9.d) T' = D * (C + x*C').
(10.a) C' = -S * (D - k^2*x*T*C) / (1 - k^2*x^2*S*T).
(10.b) S' = C * (D - k^2*x*T*C) / (1 - k^2*x^2*S*T).
(10.c) D' = -k^2 * T * (C - x*S*D) / (1 - k^2*x^2*S*T).
(10.d) T' = D * (C - x*S*D) / (1 - k^2*x^2*S*T).
(11.a) (C + x*C') = (C - x*S*D) / (1 - k^2*x^2*S*T).
(11.b) (D + x*D') = (D - k^2*x*T*C) / (1 - k^2*x^2*S*T).
EXAMPLE
E.g.f.: C(x,k) = 1 - (1)*x^2/2! + (1 + 12*k^2)*x^4/4! - (1 + 420*k^2 + 120*k^4)*x^6/6! + (1 + 10248*k^2 + 36400*k^4 + 896*k^6)*x^8/8! - (1 + 196920*k^2 + 4858560*k^4 + 2170560*k^6 + 5760*k^8)*x^10/10! + (1 + 3247860*k^2 + 461126160*k^4 + 1127738304*k^6 + 102960000*k^8 + 33792*k^10)*x^12/12! - (1 + 48361404*k^2 + 35248293080*k^4 + 340884800256*k^6 + 187282263168*k^8 + 4083183104*k^10 + 186368*k^12)*x^14/14! + ...
where C(x,k) = cos( x*cos(k*x*C(x,k)) ).
This triangle of coefficients a(n,j) of x^(2*n)*k^(2*j)/(2*n)! in C(x,k) begins
1;
-1, 0;
1, 12, 0;
-1, -420, -120, 0;
1, 10248, 36400, 896, 0;
-1, -196920, -4858560, -2170560, -5760, 0;
1, 3247860, 461126160, 1127738304, 102960000, 33792, 0;
-1, -48361404, -35248293080, -340884800256, -187282263168, -4083183104, -186368, 0;
1, 669616080, 2290777550880, 76526954183680, 153279541958400, 25081621813248, 141360128000, 983040, 0; ...
PROG
(PARI) {a(n, j) = my(C=1, S=x, D=1, T=x, Ox=x*O(x^(2*n)));
for(i=1, 2*n,
C = cos( x*cos(k*x*C +Ox) );
S = sin( x*cos(k*x*sqrt(1 - S^2 +Ox)) );
D = cos( k*x*cos(x*D +Ox));
T = (1/k)*sin( k*x*cos(x*sqrt(1 - k^2*T^2 +Ox))); );
(2*n)! * polcoeff(polcoeff(C, 2*n, x), 2*j, k)}
for(n=0, 10, for(j=0, n, print1( a(n, j), ", ")); print(""))
CROSSREFS
Cf. A370331 (S), A370332 (D), A370333 (T).
Cf. A370430.
Sequence in context: A199542 A304330 A322731 * A370430 A113923 A370526
KEYWORD
sign,tabl
AUTHOR
Paul D. Hanna, Feb 19 2024
STATUS
approved