login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A199541
Expansion x^2*cotan(x)/(exp(x^2*cotan(x))-1) = Sum_{n>=0} a(n)*x^n/(n+1)!^2.
0
1, -2, 3, 96, -820, 5760, 189000, 1720320, 1632960, 1393459200, 430921814400, 2452488192000, 204726089018880, 8224795200061440, 10001273371689600000, 47991858533498880000, -33369402947130515865600
OFFSET
0,2
FORMULA
a(n) = (n+1)!^2*sum(m=1..n, 2^(n-2*m)*(-1)^((n-m)/2)*sum(l=0..m, 2^l*l!* C(m,l)*sum(k=0..n-2*m+l,(k!*stirling1(l+k,l)*stirling2(n-2*m+l,k))/ ((l+k)!*(n-2*m+l)!)))*bernoulli(m)/(m)!), n>0, a(0)=1.
PROG
(Maxima) a(n):=if n=0 then 1 else (n+1)!^2*sum(2^(n-2*m)*(-1)^((n-m)/2) *sum(2^l*l!*binomial(m, l)*sum((k!*stirling1(l+k, l)*stirling2(n-2*m+l, k))/((l+k)!*(n-2*m+l)!), k, 0, n-2*m+l), l, 0, m)*bern(m)/(m)!, m, 1, n);
CROSSREFS
Sequence in context: A291932 A247652 A132499 * A208205 A128931 A323463
KEYWORD
sign
AUTHOR
Vladimir Kruchinin, Nov 07 2011
STATUS
approved