login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A291932
a(n) is the smallest k such that (n+1)*phi(k) = (n-1)*psi(k).
2
2, 3, 95, 5, 143, 7, 319, 323, 559, 11, 117317, 13, 1007, 899, 1919, 17, 201983, 19, 441283, 1763, 394697, 23, 4031, 5249, 2911, 3239, 23519, 29, 3599, 31, 1796647, 979801, 8159, 5459, 5183, 37, 1550047, 10763, 8639, 41, 2709037, 43, 10207, 9179, 101567, 47, 12218993, 9701, 13199, 10403, 4018073, 53
OFFSET
2,1
COMMENTS
Least k such that Product_{p|k} (p+1)/(p-1) = (n+1)/(n-1). As a result, all terms are squarefree. - Charles R Greathouse IV, Sep 06 2017
a(102) > 100000000. - Robert G. Wilson v, Sep 08 2017
a(102) = 8759437837. - Giovanni Resta, Sep 11 2017
a(108) > 2550000000. - Robert G. Wilson v, Sep 20 2017
LINKS
FORMULA
a(p) = p for all primes p.
EXAMPLE
a(4) = 95 = 5*19 because (psi(5*19) + phi(5*19)) / (psi(5*19) - phi(5*19)) = (6*20 + 4*18) / (6*20 - 4*18) = 4 and 95 is the least number with this property.
MAPLE
N:= 10^7: # to get all terms before the first with a(n) > N
M:= nextprime(N):
A:= Vector(M):
R:= proc(n) mul((i[1]+1)/(i[1]-1), i=ifactors(n)[2]) end proc:
for k from 2 to N do
r:= R(k);
n:= (r+1)/(r-1);
if n::integer and n <= M and A[n] = 0 then
A[n]:= k;
fi
od:
m:=min(select(t -> A[t]=0, [$2..M]))-1:
seq(A[i], i=2..m); # Robert Israel, Sep 06 2017
MATHEMATICA
psi[n_] := If[n < 1, 0, n Sum[ MoebiusMu[d]^2/d, {d, Divisors@ n}]]; f[n_] := Block[{k = 1}, While[(n + 1)*EulerPhi[k] != (n - 1)*psi[k], k++]; k]; Array[f, 52, 2] (* Robert G. Wilson v, Sep 06 2017 *)
PROG
(PARI) a(n)=my(target=2/(n-1)+1, start=n, end=10*n, f); while(1, forfactored(k=start, end, f=k[2][, 1]; if(vecmax(k[2][, 2])==1 && prod(i=1, #f, 2/(f[i]-1)+1)==target, return(k[1]))); start=end+1; end*=2) \\ Charles R Greathouse IV, Sep 06 2017
CROSSREFS
Sequence in context: A356786 A002983 A118167 * A247652 A132499 A199541
KEYWORD
nonn
AUTHOR
Altug Alkan, Sep 06 2017
STATUS
approved