login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the smallest k such that (n+1)*phi(k) = (n-1)*psi(k).
2

%I #40 Sep 21 2017 01:31:29

%S 2,3,95,5,143,7,319,323,559,11,117317,13,1007,899,1919,17,201983,19,

%T 441283,1763,394697,23,4031,5249,2911,3239,23519,29,3599,31,1796647,

%U 979801,8159,5459,5183,37,1550047,10763,8639,41,2709037,43,10207,9179,101567,47,12218993,9701,13199,10403,4018073,53

%N a(n) is the smallest k such that (n+1)*phi(k) = (n-1)*psi(k).

%C Least k such that Product_{p|k} (p+1)/(p-1) = (n+1)/(n-1). As a result, all terms are squarefree. - _Charles R Greathouse IV_, Sep 06 2017

%C a(102) > 100000000. - _Robert G. Wilson v_, Sep 08 2017

%C a(102) = 8759437837. - _Giovanni Resta_, Sep 11 2017

%C a(108) > 2550000000. - _Robert G. Wilson v_, Sep 20 2017

%H Robert G. Wilson v, <a href="/A291932/b291932.txt">Table of n, a(n) for n = 2..107</a>

%F a(p) = p for all primes p.

%e a(4) = 95 = 5*19 because (psi(5*19) + phi(5*19)) / (psi(5*19) - phi(5*19)) = (6*20 + 4*18) / (6*20 - 4*18) = 4 and 95 is the least number with this property.

%p N:= 10^7: # to get all terms before the first with a(n) > N

%p M:= nextprime(N):

%p A:= Vector(M):

%p R:= proc(n) mul((i[1]+1)/(i[1]-1),i=ifactors(n)[2]) end proc:

%p for k from 2 to N do

%p r:= R(k);

%p n:= (r+1)/(r-1);

%p if n::integer and n <= M and A[n] = 0 then

%p A[n]:= k;

%p fi

%p od:

%p m:=min(select(t -> A[t]=0, [$2..M]))-1:

%p seq(A[i],i=2..m); # _Robert Israel_, Sep 06 2017

%t psi[n_] := If[n < 1, 0, n Sum[ MoebiusMu[d]^2/d, {d, Divisors@ n}]]; f[n_] := Block[{k = 1}, While[(n + 1)*EulerPhi[k] != (n - 1)*psi[k], k++]; k]; Array[f, 52, 2] (* _Robert G. Wilson v_, Sep 06 2017 *)

%o (PARI) a(n)=my(target=2/(n-1)+1,start=n,end=10*n,f); while(1, forfactored(k=start,end, f=k[2][,1]; if(vecmax(k[2][,2])==1 && prod(i=1,#f, 2/(f[i]-1)+1)==target, return(k[1]))); start=end+1; end*=2) \\ _Charles R Greathouse IV_, Sep 06 2017

%Y Cf. A000010, A001615.

%K nonn

%O 2,1

%A _Altug Alkan_, Sep 06 2017