login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A378114
Number of 3-tuples (p_1, p_2, p_3) of Dyck paths of semilength n, such that each p_i is never below p_{i-1} and the upper path p_3 only touches the x-axis at its endpoints.
2
1, 1, 3, 23, 265, 3942, 70395, 1445700, 33188889, 834702890, 22656163450, 656075013591, 20085981787831, 645418018740113, 21637970282382744, 753157297564682541, 27105935164769925549, 1005184072184843625837, 38295251586474334236780, 1495061191885030011433707
OFFSET
0,3
LINKS
FORMULA
INVERTi transform of A006149.
EXAMPLE
a(2) = 3:
/\ /\ /\ /\ /\ /\
(/\/\,/\/\,/ \) (/\/\,/ \,/ \) (/ \,/ \,/ \) .
The a(3) = 23 3-tuples can be encoded as 114, 115, 124, 125, 134, 135, 144, 145, 155, 224, 225, 244, 245, 255, 334, 335, 344, 345, 355, 444, 445, 455, 555, where the digits represent the following Dyck paths:
1 2 3 4 5 /\
/\ /\ /\/\ / \
/\/\/\ / \/\ /\/ \ / \ / \ .
MAPLE
b:= proc(n, k) option remember; `if`(n=0, 1, 2^k*mul(
(2*(n-i)+2*k-3)/(n+2*k-1-i), i=0..k-1)*b(n-1, k))
end:
A:= proc(n, k) option remember;
b(n, k)-add(A(n-i, k)*b(i, k), i=1..n-1)
end:
a:= n-> A(n, 3):
seq(a(n), n=0..20);
CROSSREFS
Column k=3 of A378112.
Sequence in context: A118790 A159017 A004700 * A199544 A302117 A343772
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Nov 16 2024
STATUS
approved