login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A378113
Number of n-tuples (p_1, p_2, ..., p_n) of Dyck paths of semilength n, such that each p_i is never below p_{i-1} and the upper path p_n only touches the x-axis at its endpoints.
3
1, 1, 2, 23, 880, 105554, 40446551, 50637232553, 209584899607676, 2881189188022646406, 131778113962930341491415, 20065327661524165382215337625, 10173706896856510992170168595911888, 17178054578218938036671513200907244799852, 96590987238453485101729361602126273065518820938
OFFSET
0,3
LINKS
FORMULA
a(n) = A378112(n,n).
EXAMPLE
a(2) = 2:
/\ /\ /\
(/\/\,/ \) (/ \,/ \) .
The a(3) = 23 3-tuples can be encoded as 114, 115, 124, 125, 134, 135, 144, 145, 155, 224, 225, 244, 245, 255, 334, 335, 344, 345, 355, 444, 445, 455, 555, where the digits represent the following Dyck paths:
1 2 3 4 5 /\
/\ /\ /\/\ / \
/\/\/\ / \/\ /\/ \ / \ / \ .
MAPLE
b:= proc(n, k) option remember; `if`(n=0, 1, 2^k*mul(
(2*(n-i)+2*k-3)/(n+2*k-1-i), i=0..k-1)*b(n-1, k))
end:
A:= proc(n, k) option remember;
b(n, k)-add(A(n-i, k)*b(i, k), i=1..n-1)
end:
a:= n-> A(n$2):
seq(a(n), n=0..15);
CROSSREFS
Main diagonal of A378112.
Sequence in context: A273976 A098633 A015211 * A266992 A079480 A239398
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Nov 16 2024
STATUS
approved