OFFSET
0,3
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..62
Wikipedia, Counting lattice paths
FORMULA
a(n) = A378112(n,n).
EXAMPLE
a(2) = 2:
/\ /\ /\
(/\/\,/ \) (/ \,/ \) .
The a(3) = 23 3-tuples can be encoded as 114, 115, 124, 125, 134, 135, 144, 145, 155, 224, 225, 244, 245, 255, 334, 335, 344, 345, 355, 444, 445, 455, 555, where the digits represent the following Dyck paths:
1 2 3 4 5 /\
/\ /\ /\/\ / \
/\/\/\ / \/\ /\/ \ / \ / \ .
MAPLE
b:= proc(n, k) option remember; `if`(n=0, 1, 2^k*mul(
(2*(n-i)+2*k-3)/(n+2*k-1-i), i=0..k-1)*b(n-1, k))
end:
A:= proc(n, k) option remember;
b(n, k)-add(A(n-i, k)*b(i, k), i=1..n-1)
end:
a:= n-> A(n$2):
seq(a(n), n=0..15);
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Nov 16 2024
STATUS
approved