OFFSET
0,13
LINKS
Alois P. Heinz, Antidiagonals n = 0..115, flattened
Wikipedia, Counting lattice paths
FORMULA
Column k is INVERTi transform of row k of A368025.
EXAMPLE
A(3,2) = 9:
/\
/\/\ / \ /\ /\/\
(/\/\/\,/ \) (/\/\/\,/ \) (/ \/\,/ \)
.
/\ /\
/\ / \ /\ /\/\ /\ / \
(/ \/\,/ \) (/\/ \,/ \) (/\/ \,/ \)
.
/\ /\ /\
/\/\ /\/\ /\/\ / \ / \ / \
(/ \,/ \) (/ \,/ \) (/ \,/ \)
.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
0, 2, 9, 23, 46, 80, 127, ...
0, 5, 55, 265, 880, 2347, 5403, ...
0, 14, 400, 3942, 23695, 105554, 382508, ...
0, 42, 3266, 70395, 824229, 6601728, 40446551, ...
MAPLE
b:= proc(n, k) option remember; `if`(n=0, 1, 2^k*mul(
(2*(n-i)+2*k-3)/(n+2*k-1-i), i=0..k-1)*b(n-1, k))
end:
A:= proc(n, k) option remember;
b(n, k)-add(A(n-i, k)*b(i, k), i=1..n-1)
end:
seq(seq(A(n, d-n), n=0..d), d=0..10);
CROSSREFS
Main diagonal gives A378113.
KEYWORD
AUTHOR
Alois P. Heinz, Nov 16 2024
STATUS
approved