login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A302117
a(n) = 4*(n-1)*a(n-1) - (1/3)*Product_{k=0..n-1} (2*k-3), with a(0) = 0.
2
0, 1, 3, 23, 273, 4353, 86955, 2085975, 58396905, 1868565825, 67266342675, 2690619247575, 118386592164225, 5682542674572225, 295491902843612475, 16547538653388717975, 992852105745276401625, 63542528577414336074625, 4320891751365390890563875
OFFSET
0,3
LINKS
Travis Sherman, Summation of Glaisher- and Apery-like Series, University of Arizona, May 23 2000, p. 11, (3.58) - (3.62).
FORMULA
a(n) = (f1(n)/(2*n-1))*(2*Product_{k=0..n-1} (2*k+1)), where f1(n) corresponds to the x values such that Sum_{k>=0} 2^k/(binomial(2*k,k)*(2*k+(2*n-1))) = x*Pi + y. (See examples for connection with a(n) in terms of material at Links section).
From Robert Israel, Apr 12 2018: (Start)
3*a(n+2) - (18*n+9)*a(n+1) + 12*n*(2*n-1)*a(n) = 0.
E.g.f.: (1-sqrt(1-2*x))/2 + (arctanh(sqrt(2-4*x)) - arctanh(sqrt(2)))*sqrt(2)/4. (End)
a(n) = (n-1)!*2^(n-1)*Sum_{i=0..n-1} binomial(n-3/2, i) for n > 0 with a(0) = 0. - Mikhail Kurkov, Nov 22 2024
a(n) ~ sqrt(Pi) * n^(n - 1/2) * 2^(2*n-2) / exp(n). - Vaclav Kotesovec, Nov 22 2024
EXAMPLE
Examples ((3.58) - (3.62)) at page 11 in Links section as follows, respectively.
For n=1, f1(1) = 1/2, so a(1) = 1.
For n=2, f1(2) = 3/2, so a(2) = 3.
For n=3, f1(3) = 23/6, so a(3) = 23.
For n=4, f1(4) = 91/10, so a(4) = 273.
For n=5, f1(5) = 1451/70, so a(5) = 4353.
MAPLE
P:= 1: A[0]:= 0:
for n from 1 to 20 do
P:= P*(2*(n-1)-3);
A[n]:= 4*(n-1)*A[n-1]-P/3;
od:
seq(A[i], i=0..20); # Robert Israel, Apr 12 2018
MATHEMATICA
RecurrenceTable[{a[n] == 4*(n-1)*a[n-1] - Product[2*k-3, {k, 0, n-1}]/3, a[0] == 0}, a, {n, 0, 20}] (* Vaclav Kotesovec, Apr 02 2018 *)
nmax = 16; Flatten[{0, Table[CoefficientList[Expand[FunctionExpand[Simplify[ Table[Sum[2^j/(Binomial[2*j, j]*(2*j+(2*m-1))), {j, 0, Infinity}]/((2*m-1)/(2*Product[(2*k+1), {k, 0, m-1}])), {m, 1, nmax}]]]], Pi][[n, 2]], {n, 1, nmax}]}] (* Vaclav Kotesovec, Apr 02 2018 *)
PROG
(PARI) a=vector(20); a[1]=1; for(n=2, #a, a[n]=4*(n-1)*a[n-1]-(1/3)*prod(k=0, n-1, (2*k-3))); concat(0, a) \\ Altug Alkan, Apr 01 2018
(Magma) [n le 1 select n else 4*(n-1)*Self(n) - (1/3)*&*[2*k-3: k in [0..n-1]]: n in [0..20]]; // Bruno Berselli, Apr 12 2018
CROSSREFS
Sequence in context: A004700 A378114 A199544 * A343772 A006555 A357349
KEYWORD
nonn
AUTHOR
Detlef Meya, Apr 01 2018
EXTENSIONS
a(10)-a(11) corrected by and more terms from Altug Alkan, Apr 01 2018
STATUS
approved