OFFSET
0,3
COMMENTS
The presumption that the fraction is positive for n > 1 underlies the presumed solution to Waring's problem.
LINKS
Harry J. Smith, Table of n, a(n) for n = 0..200
Eric Weisstein's World of Mathematics, Waring's Problem
FORMULA
EXAMPLE
a(3) = 13 since 1 - (3/4)^3 - frac((3/2)^3) = 1 - 27/64 - frac(27/8) = 1 - 27/64 - 3/8 = (64 - 27 - 24)/64 = 13/64.
MATHEMATICA
Table[1 - (3/4)^n - FractionalPart[(3/2)^n], {n, 0, 24}] // Numerator (* Jean-François Alcover, Apr 26 2016 *)
PROG
(PARI) { for (n=0, 200, a=numerator(1 - (3/4)^n - frac((3/2)^n)); write("b065622.txt", n, " ", a) ) } \\ Harry J. Smith, Oct 24 2009
CROSSREFS
KEYWORD
frac,sign
AUTHOR
Henry Bottomley, Dec 03 2001
STATUS
approved