|
|
A014376
|
|
Number of trivalent connected simple graphs with 2n nodes and girth at least 8.
|
|
18
|
|
|
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 3, 13, 155, 4337, 266362, 20807688
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,19
|
|
REFERENCES
|
CRC Handbook of Combinatorial Designs, 1996, p. 647.
M. Meringer, Fast Generation of Regular Graphs and Construction of Cages</a>, Journal of Graph Theory, 30 (1999), 137-146 doi 10.1002/(SICI)1097-0118(199902)30:2<137::AID-JGT7>3.0.CO;2-G [From Jason Kimberley, Jan 29 2011]
|
|
LINKS
|
Table of n, a(n) for n=0..23.
Jason Kimberley, Connected regular graphs with girth at least 8
Jason Kimberley, Index of sequences counting connected k-regular simple graphs with girth at least g
M. Meringer, Tables of Regular Graphs
|
|
CROSSREFS
|
Contribution from Jason Kimberley, May 18 2010 and Jan 29 2011: (Start)
Connected k-regular simple graphs with girth at least 8: A186728 (any k), A186718 (triangle); specific k: A185118 (k=2), this sequence (k=3).
Trivalent simple graphs with girth at least g: A185131 (triangle); chosen g: A002851 (g=3), A014371 (g=4), A014372 (g=5), A014374 (g=6), A014375 (g=7), this sequence (g=8).
Trivalent simple graphs with girth exactly g: A198303 (triangle); chosen g: A006923 (g=3), A006924 (g=4), A006925 (g=5), A006926 (g=6), A006927 (g=7). (End)
Sequence in context: A339025 A317074 A230036 * A224990 A065622 A246418
Adjacent sequences: A014373 A014374 A014375 * A014377 A014378 A014379
|
|
KEYWORD
|
nonn,more,hard
|
|
AUTHOR
|
N. J. A. Sloane.
|
|
EXTENSIONS
|
Terms a(21), a(22), and a(23) found by running Meringer's GENREG for 0.15, 5.0, and 176.2 processor days, respectively, at U. Ncle. by Jason Kimberley, May 18 2010
|
|
STATUS
|
approved
|
|
|
|