OFFSET
1,4
COMMENTS
For a discussion and guide to related arrays, see A208510.
LINKS
G. C. Greubel, Table of n, a(n) for the first 100 rows, flattened
FORMULA
u(n,x) = x*u(n-1,x) + v(n-1,x),
v(n,x) = u(n-1,x) + v(n-1,x) +1,
where u(1,x) = 1, v(1,x) = 1.
Riordan array (f(z), z*g(z)) where f(z) = (1 - z + z^2)/(1 - 2*z + z^3) is the o.g.f. for A001595 and g(z) = (1 - z)/(1 - z - z^2) is the o.g.f. for A212804, a variant of the Fibonacci numbers. - Peter Bala, Dec 30 2015
G.f.: (1 + (1 - x)*t - t^2)/((1 - t)*(1 - (x + 1)*t + (x - 1)*t^2)) = 1 + (1+x)*t + (3+x+x^2)*t^2 + ... . - G. C. Greubel, Jan 03 2018
EXAMPLE
First five rows:
1
1 1
3 1 1
5 4 1 1
9 7 5 1 1
First three polynomials v(n,x): 1, 1 + x, 3 + x + x^2.
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := x*u[n - 1, x] + v[n - 1, x];
v[n_, x_] := u[n - 1, x] + v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A209421 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A209422 *)
CoefficientList[CoefficientList[Series[(1 - t + t^2)/((1 - t)*(1 - (x + 1)*t + (x - 1)*t^2)), {t, 0, 10}], t], x] // Flatten (* G. C. Greubel, Jan 03 2018 *)
CROSSREFS
KEYWORD
AUTHOR
Clark Kimberling, Mar 09 2012
STATUS
approved