login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A209421
Triangle of coefficients of polynomials u(n,x) jointly generated with A209422; see the Formula section.
3
1, 1, 1, 3, 1, 1, 5, 4, 1, 1, 9, 7, 5, 1, 1, 15, 15, 9, 6, 1, 1, 25, 28, 22, 11, 7, 1, 1, 41, 53, 44, 30, 13, 8, 1, 1, 67, 97, 91, 63, 39, 15, 9, 1, 1, 109, 176, 179, 140, 85, 49, 17, 10, 1, 1, 177, 315, 349, 291, 201, 110, 60, 19, 11, 1, 1, 287, 559, 667, 601, 437, 275, 138, 72, 21, 12, 1, 1
OFFSET
1,4
COMMENTS
For a discussion and guide to related arrays, see A208510.
FORMULA
u(n,x) = x*u(n-1,x) + v(n-1,x),
v(n,x) = u(n-1,x) + v(n-1,x) +1,
where u(1,x) = 1, v(1,x) = 1.
Riordan array (f(z), z*g(z)) where f(z) = (1 - z + z^2)/(1 - 2*z + z^3) is the o.g.f. for A001595 and g(z) = (1 - z)/(1 - z - z^2) is the o.g.f. for A212804, a variant of the Fibonacci numbers. - Peter Bala, Dec 30 2015
G.f.: (1 + (1 - x)*t - t^2)/((1 - t)*(1 - (x + 1)*t + (x - 1)*t^2)) = 1 + (1+x)*t + (3+x+x^2)*t^2 + ... . - G. C. Greubel, Jan 03 2018
EXAMPLE
First five rows:
1
1 1
3 1 1
5 4 1 1
9 7 5 1 1
First three polynomials v(n,x): 1, 1 + x, 3 + x + x^2.
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := x*u[n - 1, x] + v[n - 1, x];
v[n_, x_] := u[n - 1, x] + v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A209421 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A209422 *)
CoefficientList[CoefficientList[Series[(1 - t + t^2)/((1 - t)*(1 - (x + 1)*t + (x - 1)*t^2)), {t, 0, 10}], t], x] // Flatten (* G. C. Greubel, Jan 03 2018 *)
CROSSREFS
Cf. A001595 (column 1), A209422, A208510, A212804.
Sequence in context: A208510 A131767 A026780 * A320435 A275421 A243576
KEYWORD
nonn,tabl,easy
AUTHOR
Clark Kimberling, Mar 09 2012
STATUS
approved