login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A304390
Prime numbers p such that p squared + (p reversed) squared is also prime.
2
23, 41, 227, 233, 283, 401, 409, 419, 421, 461, 491, 499, 823, 827, 857, 877, 2003, 2083, 2267, 2437, 2557, 2593, 2617, 2633, 2677, 2857, 2887, 2957, 4001, 4021, 4051, 4079, 4129, 4211, 4231, 4391, 4409, 4451, 4481, 4519, 4591, 4621, 4639, 4651, 4871, 6091, 6301, 6329, 6379, 6521, 6529, 6551
OFFSET
1,1
LINKS
EXAMPLE
The prime number 227 belongs to this sequence as 722 is 227 reversed and 227^2 + 722^2 = 572813, which is prime.
MATHEMATICA
Select[Prime@ Range@ 850, PrimeQ[#^2 + FromDigits[ Reverse@ IntegerDigits@ #]^2] &] (* Giovanni Resta, Sep 03 2018 *)
PROG
(Python)
nmax=10000
def is_prime(num):
if num == 0 or num == 1: return(0)
for k in range(2, num):
if (num % k) == 0:
return(0)
return(1)
ris = ""
for i in range(nmax):
r=int((str(i)[::-1]))
t=pow(i, 2)+pow(r, 2)
if is_prime(i):
if is_prime(t):
ris = ris+str(i)+", "
print(ris)
(PARI) isok(p) = isprime(p) && isprime(p^2+eval(fromdigits(Vecrev(digits(p))))^2); \\ Michel Marcus, Aug 21 2018
CROSSREFS
Cf. A061783 (Luhn primes).
Subsequence of A069207. - Michel Marcus, Aug 21 2018
Sequence in context: A345099 A106969 A343816 * A309533 A331342 A306085
KEYWORD
nonn,base
AUTHOR
Pierandrea Formusa, Aug 16 2018
STATUS
approved