The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A304389 a(n) = 126*2^n - 22 (n>=1). 2
 230, 482, 986, 1994, 4010, 8042, 16106, 32234, 64490, 129002, 258026, 516074, 1032170, 2064362, 4128746, 8257514, 16515050, 33030122, 66060266, 132120554, 264241130, 528482282, 1056964586, 2113929194, 4227858410, 8455716842, 16911433706, 33822867434, 67645734890, 135291469802, 270582939626, 541165879274 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS a(n) is the first Zagreb index of the dendrimer nanostar NS1[n], defined pictorially in the Ashrafi et al. reference (Ns1[3] is shown in Fig. 1) or in the Ahmadi et al. reference (Fig. 1). The first Zagreb index of a simple connected graph is the sum of the squared degrees of its vertices. Alternatively, it is the sum of the degree sums d(i) + d(j) over all edges ij of the graph. The M-polynomial of NS1[n] is M(NS1[n]; x,y) = xy^4 + (9*2^n + 3)x^2*y^2 + (18*2^n - 12)x^2*y^3 + 3x^3*y^4 . LINKS Colin Barker, Table of n, a(n) for n = 1..1000 M. B. Ahmadi and M. Sadeghimehr, Atom bond connectivity index of an infinite class NS1[n] of dendrimer nanostars, Optoelectronics and Advanced Materials, 4(7):1040-1042 July 2010. Ali Reza Ashrafi and Parisa Nikzad, Kekulé index and bounds of energy for nanostar dendrimers, Digest J. of Nanomaterials and Biostructures, 4, No. 2, 2009, 383-388. E. Deutsch and Sandi Klavzar, M-polynomial and degree-based topological indices, Iranian J. Math. Chemistry, 6, No. 2, 2015, 93-102. Index entries for linear recurrences with constant coefficients, signature (3,-2). FORMULA From Colin Barker, May 18 2018: (Start) G.f.: 2*x*(115 - 104*x) / ((1 - x)*(1 - 2*x)). a(n) = 3*a(n-1) - 2*a(n-2) for n>2. (End) MAPLE seq(126*2^n-22, n = 1 .. 40); PROG (PARI) a(n) = 126*2^n - 22; \\ Altug Alkan, May 13 2018 (PARI) Vec(2*x*(115 - 104*x) / ((1 - x)*(1 - 2*x)) + O(x^40)) \\ Colin Barker, May 18 2018 (GAP) List([1..40], n->126*2^n-22); # Muniru A Asiru, May 13 2018 CROSSREFS Cf. A304386, A304387, A304388. Sequence in context: A140077 A215217 A291617 * A211711 A211716 A251445 Adjacent sequences: A304386 A304387 A304388 * A304390 A304391 A304392 KEYWORD nonn,easy AUTHOR Emeric Deutsch, May 13 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 4 01:51 EST 2023. Contains 367541 sequences. (Running on oeis4.)