

A215217


Smaller member of a pair of sphenic twins, consecutive integers, each the product of three distinct primes.


10



230, 285, 429, 434, 609, 645, 741, 805, 902, 969, 986, 1001, 1022, 1065, 1085, 1105, 1130, 1221, 1245, 1265, 1309, 1310, 1334, 1406, 1434, 1442, 1462, 1490, 1505, 1533, 1581, 1598, 1605, 1614, 1634, 1729, 1742, 1833, 1885, 1886, 1946, 2013, 2014, 2054, 2085
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

455 is not a term of the sequence, since 455 = 5*7*13 is sphenic, i.e., the number of distinct prime factors is 3, though 456 = 2^3*3*19 has 3 distinct prime factors but is not sphenic, because the number of prime factors with repetition is 5 > 3.


LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000


MAPLE

Sphenics:= select(t > (map(s>s[2], ifactors(t)[2])=[1, 1, 1]), {$1..10000}):
Sphenics intersect map(``, Sphenics, 1); # Robert Israel, Aug 13 2014


MATHEMATICA

Select[Range[2500], (PrimeNu[#] == PrimeOmega[#] == PrimeNu[#+1] == PrimeOmega[#+1] == 3)&] (* JeanFrançois Alcover, Apr 11 2014 *)
SequencePosition[Table[If[PrimeNu[n]==PrimeOmega[n]==3, 1, 0], {n, 2500}], {1, 1}][[All, 1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 02 2017 *)


PROG

(Haskell)
twinLow [] = []
twinLow [_] = []
twinLow (n : (m : ns))
 m == n + 1 = n : twinLow (m : ns)
 otherwise = twinLow (m : ns)
a215217 n = (twinLow a007304_list) !! (n  1)
 Peter Dolland, May 31 2019
(PARI) is_a033992(n) = omega(n)==3 && bigomega(n)==3
is(n) = is_a033992(n) && is_a033992(n+1) \\ Felix Fröhlich, Jun 10 2019


CROSSREFS

Cf. A007304, A066509, A140077.
Sequence in context: A171666 A321503 A140077 * A291617 A304389 A211711
Adjacent sequences: A215214 A215215 A215216 * A215218 A215219 A215220


KEYWORD

nonn


AUTHOR

Martin Renner, Aug 06 2012


STATUS

approved



