OFFSET
1,1
COMMENTS
Symmetry and 2X2 block sums zero implies that the diagonal x(i,i) are equal modulo 2 and x(i,j)=(x(i,i)+x(j,j))/2*(-1)^(i-j)
LINKS
R. H. Hardin, Table of n, a(n) for n = 1..210
FORMULA
Empirical: a(n) = 6*a(n-1) +3*a(n-2) -83*a(n-3) +92*a(n-4) +443*a(n-5) -868*a(n-6) -1073*a(n-7) +3394*a(n-8) +748*a(n-9) -7085*a(n-10) +1842*a(n-11) +8231*a(n-12) -4528*a(n-13) -5075*a(n-14) +3936*a(n-15) +1424*a(n-16) -1511*a(n-17) -121*a(n-18) +244*a(n-19) -6*a(n-20) -12*a(n-21)
EXAMPLE
Some solutions for n=3
..1..2.-5..2...-8..2.-8..3...11.-7..3.-5....7.-8..7.-8....5..1..1..1
..2.-5..8.-5....2..4..2..3...-7..3..1..1...-8..9.-8..9....1.-7..5.-7
.-5..8-11..8...-8..2.-8..3....3..1.-5..3....7.-8..7.-8....1..5.-3..5
..2.-5..8.-5....3..3..3..2...-5..1..3.-1...-8..9.-8..9....1.-7..5.-7
CROSSREFS
KEYWORD
nonn
AUTHOR
R. H. Hardin Apr 20 2012
STATUS
approved