login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A215216
Coefficient triangle of the Hermite-Bell polynomials for power -2.
3
1, 2, 4, -6, 8, -36, 24, 16, -144, 300, -120, 32, -480, 2040, -2640, 720, 64, -1440, 10320, -27720, 25200, -5040, 128, -4032, 43680, -199920, 383040, -262080, 40320, 256, -10752, 163968, -1142400, 3764880, -5503680, 2963520, -362880
OFFSET
0,2
COMMENTS
The Hermite-Bell polynomials for negative powers H(n;-r;x), n=0,1,..., r=1,2,..., and x \in C\{0} are defined by the following relation: H(n;-r;x) = x^((r+1)*n)*exp(1/x^r)*(d^n exp(-1/x^r)/dx^n). These polynomials form the natural generalization of the concept of so-called generalized Hermite-Bell polynomials given for positive integers powers by D. Dominici (see also the R. B. Paris paper). We obtain the following recurrence formula:
H(n+1;-r;x) = (r-(r+1)*n*x^r)*H(n;-r;x) + x^(r+1)*(dH(n;-r;x)/dx). In the sequel we deduce the following special ones: H(0;-r;x)=1, H(1;-r;x)=r, H(2;-r;x)=r^2 - r*(r+1)*x^r, H(3;-r;x)=r^3 - 3*r^2*(r+1)*x^r + r*(r+1)*(r+2)*x^(2*r), H(4;-r;x)=r^4 - 6*r^3*(r+1)*x^r + r^2*(r+1)*(7*r+11)*x^(2*r) - r*(r+1)*(r+2)*(r+3)*x^(3*r) - the general formulas are given in Witula et al.'s paper.
There is a connection between H(n;-1;x) and the Laguerre polynomials L(n;x;a=1), see A066667 for details.
REFERENCES
R. Witula, E. Hetmaniok, D. Slota, The Hermite-Bell polynomials for negative powers, (submitted, 2012)
LINKS
D. Dominici, Asymptotic analysis of generalized Hermite polynomials, arXiv:math/0606324 [math.CA], 2006
D. Dominici, Asymptotic analysis of generalized Hermite polynomials, Analysis 28 (2008), 239-261.
R. B. Paris, The asymptotics of the generalised Hermite-Bell polynomials, J. Comput. Appl. Math. 232 (2009), 216-226.
FORMULA
H(n+1;-2;x) = (2-3*n*x^2)*H(n;-2;x) + x^3*(dH(n;-2;x)/dx), with H(1;-2;x)=2.
EXAMPLE
Let us put W(n;x):=H(n;-2;sqrt(x)). Then we have W(0;x)=1, W(1;x)=2, W(2;x)=4-6*x, W(3;x)=8-36*x+24*x^2, W(4;x)=16-144*x+300*x^2-120*x^3, W(5;x)=32-480*x+2040*x^2-2640*x^3+720*x^4.
1;
2;
4, -6;
8, -36, 24;
16, -144, 300, -120;
32, -480, 2040, -2640, 720;
64, -1440, 10320, -27720, 25200, -5040;
128, -4032, 43680, -199920, 383040, -262080, 40320;
MAPLE
H := proc(n, r, x)
local e, d ;
e := exp(-1/x^r) ;
for d from 1 to n do
e := diff(e, x) ;
end do:
x^((r+1)*n)*exp(1/x^r)*e ;
expand(%) ;
end proc:
A215216 := proc(n, k)
subs(x=sqrt(x), H(n, 2, x)) ;
coeftayl( %, x=0, k) ;
end proc:
seq(seq( A215216(n, k), k=0..max(0, n-1)), n=0..6) ; # R. J. Mathar, Aug 07 2012
MATHEMATICA
H[n_, r_, x_] := Module[{e, d }, e = Exp[-1/x^r]; For[d = 1, d <= n, d++, e = D[e, x]]; x^((r + 1)*n)*Exp[1/x^r]*e // Expand];
A215216[n_, k_] := H[n, 2, x] /. x -> Sqrt[x] // SeriesCoefficient[#, {x, 0, k}]&;
Table[A215216[n, k], {n, 0, 8}, {k, 0, Max[0, n - 1]}] // Flatten (* Jean-François Alcover, Nov 24 2017, after R. J. Mathar *)
CROSSREFS
Cf. A066667.
Sequence in context: A068541 A329887 A108425 * A059569 A083433 A083435
KEYWORD
sign,tabf
AUTHOR
Roman Witula, Aug 06 2012
STATUS
approved