|
|
A345165
|
|
Number of integer partitions of n without an alternating permutation.
|
|
50
|
|
|
0, 0, 1, 1, 2, 2, 5, 5, 8, 11, 17, 20, 29, 37, 51, 65, 85, 106, 141, 175, 223, 277, 351, 432, 540, 663
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,5
|
|
COMMENTS
|
A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutations, even though it has the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2).
|
|
LINKS
|
|
|
EXAMPLE
|
The a(2) = 1 through a(9) = 11 partitions:
(11) (111) (22) (2111) (33) (2221) (44) (333)
(1111) (11111) (222) (4111) (2222) (3222)
(3111) (31111) (5111) (6111)
(21111) (211111) (41111) (22221)
(111111) (1111111) (221111) (51111)
(311111) (321111)
(2111111) (411111)
(11111111) (2211111)
(3111111)
(21111111)
(111111111)
|
|
MATHEMATICA
|
wigQ[y_]:=Or[Length[y]==0, Length[Split[y]]== Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
Table[Length[Select[IntegerPartitions[n], Select[Permutations[#], wigQ]=={}&]], {n, 0, 15}]
|
|
CROSSREFS
|
The Heinz numbers of these partitions are A345171.
A003242 counts anti-run compositions.
A025047 counts alternating or wiggly compositions.
A344604 counts alternating compositions with twins.
A345164 counts alternating permutations of prime indices, w/ twins A344606.
Cf. A000070, A025048, A025049, A103919, A335126, A344605, A344607, A344615, A344653, A345166, A345167, A345168, A345169, A347706, A348609.
|
|
KEYWORD
|
nonn,more
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|