OFFSET
1,1
COMMENTS
Differs from A335448 in lacking squares and having 270 etc.
First differs from A345193 in having 270.
Such a permutation is characterized by being neither a twin (x,x) nor wiggly (A025047, A345192). A sequence is wiggly if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no wiggly permutations, even though it has anti-run permutations (2,3,2,1,2) and (2,1,2,3,2).
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
EXAMPLE
The sequence of terms together with their prime indices begins:
8: {1,1,1}
16: {1,1,1,1}
24: {1,1,1,2}
27: {2,2,2}
32: {1,1,1,1,1}
40: {1,1,1,3}
48: {1,1,1,1,2}
54: {1,2,2,2}
56: {1,1,1,4}
64: {1,1,1,1,1,1}
80: {1,1,1,1,3}
81: {2,2,2,2}
88: {1,1,1,5}
96: {1,1,1,1,1,2}
For example, 36 has prime indices (1,1,2,2), which has the two wiggly permutations (1,2,1,2) and (2,1,2,1), so 36 is not in the sequence.
MATHEMATICA
Select[Range[100], Select[Permutations[Flatten[ConstantArray@@@FactorInteger[#]]], !MatchQ[#, {___, x_, y_, z_, ___}/; x<=y<=z||x>=y>=z]&]=={}&]
CROSSREFS
Positions of 0's in A344606.
These partitions are counted by A344654.
A001250 counts wiggly permutations.
A003242 counts anti-run compositions.
A344604 counts wiggly compositions with twins.
A345164 counts wiggly permutations of prime indices.
A345192 counts non-wiggly compositions.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jun 12 2021
STATUS
approved