OFFSET
1,6
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
EXAMPLE
The permutations for n = 2, 6, 8, 30, 36, 60, 180, 210, 360:
(1) (12) (132) (1212) (1213) (12132) (1324) (121213)
(21) (213) (2121) (1312) (13212) (1423) (121312)
(231) (2211) (1321) (13221) (1432) (121321)
(312) (2131) (21213) (2143) (131212)
(321) (2311) (21312) (2314) (132121)
(3121) (21321) (2413) (132211)
(3211) (22131) (2431) (212131)
(23121) (3142) (213121)
(23211) (3214) (213211)
(31212) (3241) (221311)
(32121) (3412) (231211)
(32211) (3421) (312121)
(4132) (321211)
(4213)
(4231)
(4312)
(4321)
MATHEMATICA
Table[Length[Select[Permutations[Flatten[ ConstantArray@@@FactorInteger[n]]], !MatchQ[#, {___, x_, y_, z_, ___}/; x<=y<=z]&]], {n, 100}]
CROSSREFS
All permutations of prime indices are counted by A008480.
The case of permutations is A049774.
Avoiding (3,2,1) also gives A344606.
The wiggly case is A345164.
A001250 counts wiggly permutations.
A335452 counts anti-run permutations of prime indices.
Counting compositions by patterns:
- A102726 avoiding (1,2,3).
- A128761 avoiding (1,2,3) adjacent.
- A335514 matching (1,2,3).
- A344614 avoiding (1,2,3) and (3,2,1) adjacent.
- A344615 weakly avoiding (1,2,3) adjacent.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jun 17 2021
STATUS
approved