OFFSET
1,1
COMMENTS
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
A multiset is separable if it has an anti-run permutation (no adjacent parts equal). This is equivalent to having maximal multiplicity greater than one plus the sum of the remaining multiplicities. For example, the partition (3,2,2,2,1) has the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2), so is separable.
EXAMPLE
The sequence of terms together with their prime indices begins:
8: {1,1,1} 112: {1,1,1,1,4} 232: {1,1,1,10}
16: {1,1,1,1} 125: {3,3,3} 240: {1,1,1,1,2,3}
24: {1,1,1,2} 128: {1,1,1,1,1,1,1} 243: {2,2,2,2,2}
27: {2,2,2} 135: {2,2,2,3} 248: {1,1,1,11}
32: {1,1,1,1,1} 136: {1,1,1,7} 250: {1,3,3,3}
40: {1,1,1,3} 144: {1,1,1,1,2,2} 256: {1,1,1,1,1,1,1,1}
48: {1,1,1,1,2} 152: {1,1,1,8} 272: {1,1,1,1,7}
54: {1,2,2,2} 160: {1,1,1,1,1,3} 288: {1,1,1,1,1,2,2}
56: {1,1,1,4} 162: {1,2,2,2,2} 296: {1,1,1,12}
64: {1,1,1,1,1,1} 176: {1,1,1,1,5} 297: {2,2,2,5}
80: {1,1,1,1,3} 184: {1,1,1,9} 304: {1,1,1,1,8}
81: {2,2,2,2} 189: {2,2,2,4} 320: {1,1,1,1,1,1,3}
88: {1,1,1,5} 192: {1,1,1,1,1,1,2} 324: {1,1,2,2,2,2}
96: {1,1,1,1,1,2} 208: {1,1,1,1,6} 328: {1,1,1,13}
104: {1,1,1,6} 224: {1,1,1,1,1,4} 336: {1,1,1,1,2,4}
MATHEMATICA
Select[Range[100], !MatchQ[FactorInteger[#], {{_, 2}}]&&Select[Permutations[Flatten[ConstantArray@@@FactorInteger[#]]], !MatchQ[#, {___, x_, x_, ___}]&]=={}&]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jun 17 2021
STATUS
approved