login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A345190
Number of rows with the value "true" in the Kleene truth tables of all bracketed formulae with n distinct propositions p1, ..., pn connected by the binary connective of implication.
2
1, 5, 30, 229, 1938, 17530, 165852, 1621133, 16242474, 165923854, 1721675460, 18095802306, 192256162740, 2061367432212, 22276538889912, 242387718986301, 2653259550491034, 29198054511893638, 322835545567447092, 3584671507685675894, 39955514234936341980, 446897274497509974508
OFFSET
1,2
FORMULA
G.f.: (4-sqrt(1-12*x)-sqrt(5+24*x+4*sqrt(1-12*x)))/6.
a(n) = 2*A005159(n-1) - A345189(n). - G. C. Greubel, May 20 2022
MATHEMATICA
CoefficientList[Series[(4 -Sqrt[1-12*x] -Sqrt[5 +24*x +4*Sqrt[1-12*x]])/6, {x, 0, 40}], x]//Rest (* G. C. Greubel, May 20 2022 *)
PROG
(PARI) my(x='x+O('x^30)); Vec((4-sqrt(1-12*x)-sqrt(5+24*x+4*sqrt(1-12*x)))/6)
(SageMath)
def A345190_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (4-sqrt(1-12*x)-sqrt(5+24*x+4*sqrt(1-12*x)))/6 ).list()
a=A345190_list(40); a[1:] # G. C. Greubel, May 20 2022
CROSSREFS
Cf. A005159 (unknown rows, shifted), A025226 (all rows), A345189 (false rows).
Sequence in context: A318920 A363908 A167892 * A144498 A201368 A072213
KEYWORD
nonn
AUTHOR
Michel Marcus, Jun 10 2021
STATUS
approved