OFFSET
1,16
COMMENTS
A factorization of n is a weakly increasing sequence of positive integers > 1 with product n.
A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutations, even though it does have the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2). Alternating permutations of multisets are a generalization of alternating or up-down permutations of {1..n}.
LINKS
FORMULA
a(2^n) = A345165(n).
EXAMPLE
The a(n) factorizations for n = 96, 144, 192, 384:
(2*2*2*12) (12*12) (3*4*4*4) (4*4*4*6)
(2*2*2*2*6) (2*2*2*18) (2*2*2*24) (2*2*2*48)
(2*2*2*2*2*3) (2*2*2*2*9) (2*2*2*2*12) (2*2*2*2*24)
(2*2*2*2*3*3) (2*2*2*2*2*6) (2*2*2*2*3*8)
(2*2*2*2*3*4) (2*2*2*2*4*6)
(2*2*2*2*2*2*3) (2*2*2*2*2*12)
(2*2*2*2*2*2*6)
(2*2*2*2*2*3*4)
(2*2*2*2*2*2*2*3)
MATHEMATICA
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
wigQ[y_]:=Or[Length[y]==0, Length[Split[y]]==Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
Table[Length[Select[facs[n], Select[Permutations[#], wigQ]=={}&]], {n, 100}]
CROSSREFS
The case without twins is A347706.
Numbers with a factorization of this type are A348609.
A001250 counts alternating permutations.
A339846 counts even-length factorizations.
A339890 counts odd-length factorizations.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Oct 28 2021
STATUS
approved