login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of partitions of n containing a clique of size 6.
13

%I #15 Oct 01 2014 08:24:31

%S 1,0,1,1,2,2,5,5,8,10,15,18,27,33,47,57,78,96,129,159,208,258,330,407,

%T 517,635,798,978,1217,1482,1833,2225,2729,3303,4028,4856,5885,7070,

%U 8528,10211,12259,14628,17494,20800,24777,29378,34867

%N Number of partitions of n containing a clique of size 6.

%C All parts of a number partition with the same value form a clique. The size of a clique is the number of elements in the clique.

%H Alois P. Heinz, <a href="/A183563/b183563.txt">Table of n, a(n) for n = 6..1000</a>

%F G.f.: (1-Product_{j>0} (1-x^(6*j)+x^(7*j))) / (Product_{j>0} (1-x^j)).

%e a(10) = 2, because 2 partitions of 10 contain (at least) one clique of size 6: [1,1,1,1,1,1,2,2], [1,1,1,1,1,1,4].

%p b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, [0, 0],

%p add((l->`if`(j=6, [l[1]$2], l))(b(n-i*j, i-1)), j=0..n/i)))

%p end:

%p a:= n-> (l-> l[2])(b(n, n)):

%p seq(a(n), n=6..55);

%t max = 55; f = (1 - Product[1 - x^(6j) + x^(7j), {j, 1, max}])/Product[1 - x^j, {j, 1, max}]; s = Series[f, {x, 0, max}]; Drop[CoefficientList[s, x], 6] (* _Jean-François Alcover_, Oct 01 2014 *)

%Y 6th column of A183568. Cf. A000041, A183558, A183559, A183560, A183561, A183562, A183564, A183565, A183566, A183567.

%K nonn

%O 6,5

%A _Alois P. Heinz_, Jan 05 2011