login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A363241
Number of partitions of n with prime rank.
0
0, 0, 1, 1, 1, 3, 3, 6, 6, 10, 12, 19, 22, 33, 38, 54, 65, 91, 106, 145, 173, 228, 274, 356, 424, 545, 652, 823, 986, 1232, 1468, 1822, 2172, 2665, 3173, 3869, 4590, 5568, 6591, 7938, 9386, 11249, 13256, 15821, 18608, 22100, 25941, 30695, 35933, 42373, 49501, 58160, 67814, 79434, 92396, 107932
OFFSET
1,6
LINKS
FORMULA
G.f.: (1/Product_{k>=1} (1-x^k)) * Sum_{k>=1} (-1)^(k-1) * x^(k*(3*k-1)/2) * (1-x^k) * Sum_{p prime} x^(k*p).
a(n) = Sum_{p prime} A063995(n,p). - Alois P. Heinz, Dec 20 2024
EXAMPLE
a(6) = 3 counts these partitions: 6, 5+1, 4+2.
MAPLE
b:= proc(n, i, c) option remember; `if`(i>n, 0, `if`(i=n,
`if`(isprime(i-c), 1, 0), b(n-i, i, c+1)+b(n, i+1, c)))
end:
a:= n-> b(n, 1$2):
seq(a(n), n=1..56); # Alois P. Heinz, May 23 2023
MATHEMATICA
b[n_, i_, c_] := b[n, i, c] = If[i > n, 0, If[i == n, If[i-c > 0 && PrimeQ[i-c], 1, 0], b[n-i, i, c+1] + b[n, i+1, c]]];
a[n_] := b[n, 1, 1];
Table[a[n], {n, 1, 56}] (* Jean-François Alcover, Dec 20 2024, after Alois P. Heinz *)
PROG
(PARI) my(N=60, x='x+O('x^N)); concat([0, 0], Vec(1/prod(k=1, N, 1-x^k)*sum(k=1, N, (-1)^(k-1)*x^(k*(3*k-1)/2)*(1-x^k)*sum(j=1, N, isprime(j)*x^(k*j)))))
CROSSREFS
KEYWORD
nonn,easy,changed
AUTHOR
Seiichi Manyama, May 23 2023
STATUS
approved