login
A363238
Number of partitions of n with rank a multiple of 6.
3
1, 0, 1, 1, 1, 1, 5, 2, 6, 6, 10, 11, 21, 19, 32, 37, 51, 59, 90, 97, 138, 162, 215, 253, 340, 392, 514, 610, 771, 916, 1166, 1367, 1711, 2032, 2503, 2965, 3647, 4293, 5237, 6188, 7469, 8808, 10613, 12459, 14920, 17530, 20862, 24457, 29029, 33924, 40099, 46829, 55101, 64215, 75386
OFFSET
1,7
FORMULA
G.f.: (1/Product_{k>=1} (1-x^k)) * Sum_{k>=1} (-1)^(k-1) * x^(k*(3*k-1)/2) * (1-x^k) * (1+x^(6*k)) / (1-x^(6*k)).
MAPLE
b:= proc(n, i, c) option remember; `if`(i>n, 0, `if`(i=n,
`if`(irem(i-c, 6)=0, 1, 0), b(n-i, i, c+1)+b(n, i+1, c)))
end:
a:= n-> b(n, 1$2):
seq(a(n), n=1..55); # Alois P. Heinz, May 23 2023
PROG
(PARI) my(N=60, x='x+O('x^N)); Vec(1/prod(k=1, N, 1-x^k)*sum(k=1, N, (-1)^(k-1)*x^(k*(3*k-1)/2)*(1-x^k)*(1+x^(6*k))/(1-x^(6*k))))
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 23 2023
STATUS
approved