

A276566


Decimal expansion of 466/885.


0



5, 2, 6, 5, 5, 3, 6, 7, 2, 3, 1, 6, 3, 8, 4, 1, 8, 0, 7, 9, 0, 9, 6, 0, 4, 5, 1, 9, 7, 7, 4, 0, 1, 1, 2, 9, 9, 4, 3, 5, 0, 2, 8, 2, 4, 8, 5, 8, 7, 5, 7, 0, 6, 2, 1, 4, 6, 8, 9, 2, 6, 5, 5, 3, 6, 7, 2, 3, 1, 6, 3, 8, 4, 1, 8, 0, 7, 9, 0, 9, 6, 0, 4, 5, 1, 9
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

This is the average length of a shortest path between two random points on the infinite Sierpinski gasket of unit side.
The average number of moves in a shortest path between two random configurations in the ndisk Tower of Hanoi is asymptotically (1 + O(1))*466/885*2^n.


REFERENCES

A. Hinz, The Tower of Hanoi, L'Enseignement mathÃ©matique 35 (1989), 289321.


LINKS

Table of n, a(n) for n=0..85.
T. Chan, A statistical analysis of the Towers of Hanoi problem, International Journal of Computer Mathematics 28 (1988), 543623.
A. Hinz, Shortest paths between regular states of the Tower of Hanoi, Information Sciences 63 (1992), 173181.
A. Hinz and A. Schief, The average distance on the Sierpinski gasket, Probability Theory and Related Fields 87 (1990), 129138.


EXAMPLE

466/885 = 0.5265536723... is a repeating decimal with nonperiod length 1 and period length 58.
466/885 = 0.5(2655367231638418079096045197740112994350282485875706214689).  Andrey Zabolotskiy, Sep 07 2016


MATHEMATICA

First@ RealDigits@ N[466/885, 120] (* Michael De Vlieger, Sep 07 2016 *)


CROSSREFS

Sequence in context: A232356 A211015 A077141 * A158624 A021659 A011506
Adjacent sequences: A276563 A276564 A276565 * A276567 A276568 A276569


KEYWORD

nonn,cons


AUTHOR

Martin Renner, Sep 06 2016


STATUS

approved



