login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A232356
Expansion of 2/9 * c(q) * c(q^2) - q * (psi(q) * psi(q^3))^2 in powers of q where psi() is a Ramanujan theta function and c(q) is a cubic AGM theta function.
2
1, 0, 5, -2, 6, 4, 8, -6, 17, 0, 12, 2, 14, 0, 30, -14, 18, 16, 20, -12, 40, 0, 24, -2, 31, 0, 53, -16, 30, 24, 32, -30, 60, 0, 48, 14, 38, 0, 70, -36, 42, 32, 44, -24, 102, 0, 48, -10, 57, 0, 90, -28, 54, 52, 72, -48, 100, 0, 60, 12, 62, 0, 136, -62, 84, 48
OFFSET
1,3
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
a(n) = 2 * A121443(n) - A111932(n). a(2*n) = -2 * A229615(n). a(12*n + 2) = a(12*n + 10) = 0.
a(n) = A123532(n) + 7 * A229615(n). a(3*n + 2) = 6 * A232343(n-1). a(6*n + 5) = 6 * A098098(n). a(12*n + 4) = -2 * A144614(n). a(12*n + 6) = 4 * A008438(n). a(12*n + 8) = -6 * A033686(n). - Michael Somos, May 23 2014
EXAMPLE
G.f. = q + 5*q^3 - 2*q^4 + 6*q^5 + 4*q^6 + 8*q^7 - 6*q^8 + 17*q^9 + ...
MATHEMATICA
a[ n_] := If[ n < 1, 0, Sum[ d ( 2 Mod[ d, 2] Boole[Mod[ n/d, 3] > 0] - Mod[ n/d, 2] Boole[ Mod[d, 3] > 0]), {d, Divisors @n}]];
a[ n_] := SeriesCoefficient[ 2 q (QPochhammer[ q^3] QPochhammer[ q^6])^3 / (QPochhammer[ q] QPochhammer[ q^2]) - q (QPochhammer[ q^2] QPochhammer[ q^6])^4 / (QPochhammer[ q] QPochhammer[ q^3])^2, {q, 0, n}];
PROG
(PARI) {a(n) = local(A); if( n<1, 0, n--; A=x*O(x^n); polcoeff( 2 * (eta(x^3 + A) * eta(x^6 + A))^3 / (eta(x + A) * eta(x^2 + A)) - (eta(x^2 + A) * eta(x^6 + A))^4 / (eta(x + A) * eta(x^3 + A))^2, n))};
(Sage) ModularForms( Gamma0(6), 2, prec=70).1;
(Magma) Basis( ModularForms( Gamma0(6), 2), 70) [2];
KEYWORD
sign
AUTHOR
Michael Somos, Nov 22 2013
STATUS
approved