login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A232343
Expansion of q^(-5/3) * c(q^2)^3 / (9 * c(q)) in powers of q where c() is a cubic AGM theta function.
3
1, -1, 2, 0, 3, -2, 4, 0, 5, -5, 8, 0, 7, -4, 8, 0, 9, -8, 10, 0, 14, -6, 12, 0, 16, -14, 14, 0, 15, -8, 20, 0, 17, -14, 18, 0, 19, -10, 24, 0, 26, -21, 22, 0, 23, -16, 28, 0, 25, -20, 32, 0, 32, -14, 28, 0, 29, -28, 30, 0, 38, -16, 32, 0, 33, -31, 40, 0, 40
OFFSET
0,3
COMMENTS
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
LINKS
FORMULA
Expansion of q^(-5/3) * eta(q) * eta(q^6)^9 / (eta(q^2) * eta(q^3))^3 in powers of q.
Euler transform of period 6 sequence [-1, 2, 2, 2, -1, -4, ...].
a(n) = 1/6 * b(3*n + 5) where b() is multiplicative with b(2^e) = 2 - 2^e, b(3^e) = 0^e, b(p^e) = (p^(e+1) - 1) / (p - 1) if p>3.
a(2*n) = A098098(n). a(4*n + 1) = - A033686(n). a(4*n + 3) = 0.
EXAMPLE
G.f. = 1 - x + 2*x^2 + 3*x^4 - 2*x^5 + 4*x^6 + 5*x^8 - 5*x^9 + 8*x^10 + ...
G.f. = q^5 - q^8 + 2*q^11 + 3*q^17 - 2*q^20 + 4*q^23 + 5*q^29 - 5*q^32 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ x] QPochhammer[ x^6]^9 / (QPochhammer[ x^2] QPochhammer[ x^3])^3, {x, 0, n}];
a[ n_] := SeriesCoefficient[ (QPochhammer[ -x^3] QPochhammer[ x^12])^3 / (QPochhammer[ -x] QPochhammer[ x^4]), {x, 0, n}];
a[ n_] := If[ n < 0, 0, Times @@ (Which[# == 2, 2 - 2^#2, # == 3, 1, True, (#^(#2 + 1) - 1) / (# - 1)] & @@@ FactorInteger[3 n + 5]) / 6]; (* Michael Somos, Jul 09 2018 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^6 + A)^9 / (eta(x^2 + A) * eta(x^3 + A))^3, n))};
(PARI) {a(n) = my(A, p, e); if( n<0, 0, n = 3*n + 5; A = factor(n); 1/6 * prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, 2 - 2^e, p==3, 0, (p^(e+1) - 1) / (p - 1))))};
(Magma) Basis( ModularForms( Gamma0(18), 2), 210) [6]; /* Michael Somos, Jul 09 2018 */
CROSSREFS
Sequence in context: A208435 A208457 A353335 * A140944 A057860 A092915
KEYWORD
sign
AUTHOR
Michael Somos, Nov 22 2013
STATUS
approved