The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A140944 Triangle T(d,n) read by rows, the n-th term of the d-th differences of the Jacobsthal sequence A001045. 3
 0, 1, 0, -1, 2, 0, 3, -2, 4, 0, -5, 6, -4, 8, 0, 11, -10, 12, -8, 16, 0, -21, 22, -20, 24, -16, 32, 0, 43, -42, 44, -40, 48, -32, 64, 0, -85, 86, -84, 88, -80, 96, -64, 128, 0, 171, -170, 172, -168, 176, -160, 192, -128, 256, 0, -341, 342, -340, 344, -336, 352, -320, 384, -256, 512, 0 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS A variant of the triangle A140503, now including the diagonal. Since the diagonal contains zeros, rows sums are those of A140503. LINKS FORMULA T(d,n)=T(d-1,n+1)-T(d-1,n). T(0,n)=A001045(n). EXAMPLE 0; 1, 0; -1, 2, 0; 3, -2, 4, 0; -5, 6, -4, 8, 0; 11, -10, 12, -8, 16, 0; -21, 22, -20, 24, -16, 32, 0; MAPLE A140944 := proc(d, n) if d = 0 then A001045(n) ; else procname(d-1, n+1)-procname(d-1, n) ; fi; end: seq(seq(A140944(d, n), n=0..d), d=0..10) ; # R. J. Mathar, Sep 07 2009 MATHEMATICA T[0, 0] = 0; T[1, 0] = T[0, 1] = 1; T[0, n_] := T[0, n] = T[0, n-1] + 2*T[0, n-2]; T[d_, d_]=0; T[d_, n_] := T[d, n] = T[d-1, n+1] - T[d-1, n]; Table[T[d, n], {d, 0, 10}, {n, 0, d}] // Flatten (* Jean-François Alcover, Dec 17 2014 *) CROSSREFS Cf. A140503. Sequence in context: A208435 A208457 A232343 * A057860 A092915 A063749 Adjacent sequences:  A140941 A140942 A140943 * A140945 A140946 A140947 KEYWORD sign,tabl AUTHOR Paul Curtz, Jul 24 2008 EXTENSIONS Edited and extended by R. J. Mathar, Sep 07 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 29 04:54 EDT 2020. Contains 338066 sequences. (Running on oeis4.)