

A057860


Number of residue classes modulo n which contain only composite numbers.


2



0, 0, 0, 1, 0, 2, 0, 3, 2, 4, 0, 6, 0, 6, 5, 7, 0, 10, 0, 10, 7, 10, 0, 14, 4, 12, 8, 14, 0, 19, 0, 15, 11, 16, 9, 22, 0, 18, 13, 22, 0, 27, 0, 22, 19, 22, 0, 30, 6, 28, 17, 26, 0, 34, 13, 30, 19, 28, 0, 41, 0, 30, 25, 31, 15, 43, 0, 34, 23
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,6


LINKS

G. C. Greubel, Table of n, a(n) for n = 1..10000


FORMULA

a(n) = n  A057859(n) = A051953(n)  A001221(n).


EXAMPLE

a(30) = 19 since 30k+m is always composite if m = 0, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27 or 28


MATHEMATICA

Table[n  EulerPhi[n]  PrimeNu[n], {n, 1, 100}] (* G. C. Greubel, May 13 2017 *)


PROG

(PARI) for(n=1, 100, print1(n  eulerphi(n)  omega(n), ", ")) \\ G. C. Greubel, May 13 2017


CROSSREFS

Cf. A057858.
Sequence in context: A208457 A232343 A140944 * A092915 A063749 A231333
Adjacent sequences: A057857 A057858 A057859 * A057861 A057862 A057863


KEYWORD

nonn,look


AUTHOR

Henry Bottomley, Sep 08 2000


STATUS

approved



