OFFSET
0,2
COMMENTS
Also, fourth moments of Rudin-Shapiro polynomials (see Doche, Doche-Habsieger, Ekhad papers). - Doron Zeilberger, Apr 15 2016
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Christophe Doche, Even moments of generalized Rudin-Shapiro polynomials, Mathematics of computation 74.252 (2005): 1923-1935.
Christophe Doche and Laurent Habsieger, Moments of the Rudin-Shapiro polynomials, Journal of Fourier Analysis and Applications 10.5 (2004): 497-505.
Shalosh B. Ekhad, Explicit Generating Functions, Asymptotics, and More for the First 10 Even Moments of the Rudin-Shapiro Polynomials, Preprint, 2016.
Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, A Meta-Algorithm for Creating Fast Algorithms for Counting ON Cells in Odd-Rule Cellular Automata, arXiv:1503.01796 [math.CO], 2015; see also the Accompanying Maple Package.
Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, Odd-Rule Cellular Automata on the Square Grid, arXiv:1503.04249 [math.CO], 2015.
N. J. A. Sloane, On the No. of ON Cells in Cellular Automata, Video of talk in Doron Zeilberger's Experimental Math Seminar at Rutgers University, Feb. 05 2015: Part 1, Part 2
N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015.
Index entries for linear recurrences with constant coefficients, signature (2,8).
FORMULA
a(n) = 2*a(n-1) + 8*a(n-2).
a(n) = (4^(1+n) - (-2)^n)/3. - Colin Barker, Aug 22 2014
a(n) = A054881(n+3)/8. - L. Edson Jeffery, Apr 22 2015
a(n) = A003683(n+2)/2 and the above formula follow from the explicit expression for a(n), cf. second formula. - M. F. Hasler, Sep 11 2020
a(n) = 2^n*A001045(n+2). - R. J. Mathar, Mar 08 2021
MATHEMATICA
CoefficientList[Series[(1+4x)/((1+2x)(1-4x)), {x, 0, 50}], x] (* Vincenzo Librandi, Aug 22 2014 *)
PROG
(Magma) I:=[1, 6]; [n le 2 select I[n] else 2*Self(n-1)+8*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Aug 22 2014
(PARI) Vec((1+4*x)/((1+2*x)*(1-4*x)) + O(x^100)) \\ Colin Barker, Aug 22 2014
(PARI) apply( A246036(n)=(4^(1+n)-(-2)^n)/3, [0..30]) \\ M. F. Hasler, Sep 18 2020
(SageMath)
A246036= BinaryRecurrenceSequence(2, 8, 1, 6)
[A246036(n) for n in range(41)] # G. C. Greubel, Mar 08 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Aug 21 2014
STATUS
approved