login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A246036
Expansion of (1+4*x)/((1+2*x)*(1-4*x)).
8
1, 6, 20, 88, 336, 1376, 5440, 21888, 87296, 349696, 1397760, 5593088, 22368256, 89481216, 357908480, 1431666688, 5726601216, 22906535936, 91625881600, 366504050688, 1466015154176, 5864062713856, 23456246661120, 93824995033088, 375299963355136, 1501199886974976, 6004799480791040, 24019198057381888
OFFSET
0,2
COMMENTS
Also, fourth moments of Rudin-Shapiro polynomials (see Doche, Doche-Habsieger, Ekhad papers). - Doron Zeilberger, Apr 15 2016
LINKS
Christophe Doche, Even moments of generalized Rudin-Shapiro polynomials, Mathematics of computation 74.252 (2005): 1923-1935.
Christophe Doche and Laurent Habsieger, Moments of the Rudin-Shapiro polynomials, Journal of Fourier Analysis and Applications 10.5 (2004): 497-505.
Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, A Meta-Algorithm for Creating Fast Algorithms for Counting ON Cells in Odd-Rule Cellular Automata, arXiv:1503.01796 [math.CO], 2015; see also the Accompanying Maple Package.
Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, Odd-Rule Cellular Automata on the Square Grid, arXiv:1503.04249 [math.CO], 2015.
N. J. A. Sloane, On the No. of ON Cells in Cellular Automata, Video of talk in Doron Zeilberger's Experimental Math Seminar at Rutgers University, Feb. 05 2015: Part 1, Part 2
N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015.
FORMULA
a(n) = 2*a(n-1) + 8*a(n-2).
a(n) = (4^(1+n) - (-2)^n)/3. - Colin Barker, Aug 22 2014
a(n) = A054881(n+3)/8. - L. Edson Jeffery, Apr 22 2015
a(n) = A003683(n+2)/2 and the above formula follow from the explicit expression for a(n), cf. second formula. - M. F. Hasler, Sep 11 2020
a(n) = 2^n*A001045(n+2). - R. J. Mathar, Mar 08 2021
MATHEMATICA
CoefficientList[Series[(1+4x)/((1+2x)(1-4x)), {x, 0, 50}], x] (* Vincenzo Librandi, Aug 22 2014 *)
PROG
(Magma) I:=[1, 6]; [n le 2 select I[n] else 2*Self(n-1)+8*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Aug 22 2014
(PARI) Vec((1+4*x)/((1+2*x)*(1-4*x)) + O(x^100)) \\ Colin Barker, Aug 22 2014
(PARI) apply( A246036(n)=(4^(1+n)-(-2)^n)/3, [0..30]) \\ M. F. Hasler, Sep 18 2020
(SageMath)
A246036= BinaryRecurrenceSequence(2, 8, 1, 6)
[A246036(n) for n in range(41)] # G. C. Greubel, Mar 08 2023
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Aug 21 2014
STATUS
approved