login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A271495
Eighth moments of the Rudin-Shapiro polynomials.
3
1, 70, 668, 14104, 198640, 3420256, 53143488, 864838016, 13714054912, 220102985216, 3513567575040, 56284226394112, 900460612808704, 14414430456537088, 230619566685274112, 3689872453256970240, 59031392914560188416, 944463240632040030208, 15111217402853747064832
OFFSET
0,2
REFERENCES
Shalosh B. Ekhad, Explicit Generating Functions, Asymptotics, and More for the First 10 Even Moments of the Rudin-Shapiro Polynomials, Preprint, 2016.
Doron Zeilberger, Personal Communication to N. J. A. Sloane, Apr 15 2016.
LINKS
Christophe Doche, Even moments of generalized Rudin-Shapiro polynomials, Mathematics of computation 74.252 (2005): 1923-1935.
Christophe Doche and Laurent Habsieger, Moments of the Rudin-Shapiro polynomials, Journal of Fourier Analysis and Applications 10.5 (2004): 497-505.
FORMULA
G.f.: -(90194313216*t^11 -15300820992*t^10 -1979711488*t^9 -292552704*t^8 -22216704*t^7 +10649600*t^6 -1024*t^5 -144384*t^4 +7008*t^3 +664*t^2 -54*t -1) / (8*t+1) / (16*t-1) / (1409286144*t^10 -264241152*t^9 -25690112*t^8 -4128768*t^7 -311296*t^6 +170496*t^5 -2624*t^4 -2208*t^3 +148*t^2 +8*t -1).
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Apr 15 2016
STATUS
approved