login
Eighth moments of the Rudin-Shapiro polynomials.
3

%I #17 Sep 19 2020 18:27:40

%S 1,70,668,14104,198640,3420256,53143488,864838016,13714054912,

%T 220102985216,3513567575040,56284226394112,900460612808704,

%U 14414430456537088,230619566685274112,3689872453256970240,59031392914560188416,944463240632040030208,15111217402853747064832

%N Eighth moments of the Rudin-Shapiro polynomials.

%D Shalosh B. Ekhad, Explicit Generating Functions, Asymptotics, and More for the First 10 Even Moments of the Rudin-Shapiro Polynomials, Preprint, 2016.

%D Doron Zeilberger, Personal Communication to N. J. A. Sloane, Apr 15 2016.

%H Christophe Doche, <a href="https://doi.org/10.1090/S0025-5718-05-01736-9">Even moments of generalized Rudin-Shapiro polynomials</a>, Mathematics of computation 74.252 (2005): 1923-1935.

%H Christophe Doche and Laurent Habsieger, <a href="http://web.science.mq.edu.au/~doche/049.pdf">Moments of the Rudin-Shapiro polynomials</a>, Journal of Fourier Analysis and Applications 10.5 (2004): 497-505.

%F G.f.: -(90194313216*t^11 -15300820992*t^10 -1979711488*t^9 -292552704*t^8 -22216704*t^7 +10649600*t^6 -1024*t^5 -144384*t^4 +7008*t^3 +664*t^2 -54*t -1) / (8*t+1) / (16*t-1) / (1409286144*t^10 -264241152*t^9 -25690112*t^8 -4128768*t^7 -311296*t^6 +170496*t^5 -2624*t^4 -2208*t^3 +148*t^2 +8*t -1).

%Y Cf. A246036, A271494, A271496.

%K nonn

%O 0,2

%A _N. J. A. Sloane_, Apr 15 2016