login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A246038
G.f.: (1+2x)(1+2x+4x^2)/(1-3x-8x^3-8x^4).
1
1, 7, 29, 103, 373, 1407, 5277, 19639, 73157, 272943, 1018157, 3796839, 14159317, 52806751, 196940221, 734469911, 2739138277, 10215390607, 38097452877, 142081224135, 529879903477, 1976142458303, 7369856791005, 27485259393911, 102503957075973, 382279865222383, 1425680525146477, 5316955307198503
OFFSET
0,2
COMMENTS
This is the subsequence A246039(2^n-1), n >= 0.
LINKS
Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, A Meta-Algorithm for Creating Fast Algorithms for Counting ON Cells in Odd-Rule Cellular Automata, arXiv:1503.01796, 2015; see also the Accompanying Maple Package.
Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, Odd-Rule Cellular Automata on the Square Grid, arXiv:1503.04249, 2015.
N. J. A. Sloane, On the No. of ON Cells in Cellular Automata, Video of talk in Doron Zeilberger's Experimental Math Seminar at Rutgers University, Feb. 05 2015: Part 1, Part 2
N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168, 2015
MAPLE
-(2*x+1)*(4*x^2+2*x+1)/(8*x^4+8*x^3+3*x-1);
MATHEMATICA
LinearRecurrence[{3, 0, 8, 8}, {1, 7, 29, 103}, 28] (* Jean-François Alcover, Oct 09 2018 *)
CROSSREFS
Cf. A246039.
Sequence in context: A369805 A227086 A102485 * A049349 A124828 A296646
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Aug 21 2014
STATUS
approved